首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 67 毫秒
1.
土壤中的水分是地球生态系统的重要组成部分,在全球水循环中发挥着重要的作用。基于被动微波数据提取的湿度指数因其具有全天候、高时间分辨率和数据处理简单等优点,大大推进了大范围地区土壤湿度的重复观测。基于AMSR-E(advanced microwave scanning radiometer-earth observing system)数据提取了8种微波湿度指数,利用密云和汉中气象台站的数据,分别对各个微波湿度指数进行时间序列分析,通过比较得到与降水量相关性较好的垂直极化多时相微波湿度指数PIV,6.9和比值指数DIV,10.7;在此基础上,分析该2种微波湿度指数在密云和汉中10像元×12像元矩形区域随降水量的变化;同时,与10.7 GHz的微波极化差异指数(microwave polarization difference index,MPDI)进行比较,评价3种指数对土壤湿度的监测优劣;在全国范围内,分别对3种微波湿度指数与降水量进行相关分析,得到全国土壤湿度监测的最优指数。结果表明:PIV,6.9作为一种新的微波湿度指数效果最优,可以用于全国范围的土壤湿度监测研究。  相似文献   

2.
MODIS和AVHRR植被指数关系的研究   总被引:31,自引:1,他引:31  
对同一区域不同时次的MODIS和AVHRR的归一化植被指数 (NDVI),从直方图和特征空间分布方面进行了分析比较。  相似文献   

3.
锡林浩特草原区域MODIS LAI产品真实性检验与误差分析   总被引:2,自引:0,他引:2  
本文研究了LAI产品真实性检验的指标和方法,建立了LAI产品真实性检验的流程,将遥感产品真实性检验误差分解为模型误差、数据定量化差异和尺度效应3个方面。以内蒙古锡林浩特草原为研究区,结合实测数据和Landsat TM数据建立NDVI-LAI模型,得到LAI验证参考"真值",据此"真值"按照本文的流程对MODIS LAI产品进行验证,分析了研究区MODIS LAI产品真实性检验的误差来源。研究表明,该研究区的MODIS LAI(MOD15A2)产品相对高估约25%。各个误差因素中,LAI遥感模型差异对于结果影响最大,MODIS LAI模型高估了该区域草地LAI(高估约44.2%);数据定量差异的影响也比较大,MODIS地表反射率数据与Landsat TM地表反射率数据的差异造成了约16.2%的低估;尺度效应的影响较小,造成约3.1%的低估,其中NDVI-LAI模型的尺度效应带来2.4%的低估,NDVI数据的尺度效应造成约0.7%的低估。  相似文献   

4.
当前对MODIS LAI产品的真实性检验工作中,更多的是关注遥感产品在数值与趋势上与地表真值的一致性程度,很少工作能够全面分析遥感LAI产品偏差来源以及不同来源的偏差对全局偏差的贡献率。本文在对MODIS LAI产品进行真实性检验基础之上,进一步分析了MODIS LAI产品偏差来源。将遥感产品真实性检验偏差来源分解为反演模型,反射率数据和冠层聚集效应3个方面,并定量分析各个偏差源对真实性检验结果的影响。以河北省怀来玉米为研究对象,结合实测LAI数据和Landsat 8 OLI(Operational Land Imager)数据建立NDVI LAI半经验模型,得到LAI参考数据,据此对MODIS LAI产品进行真实性检验及偏差分析。研究表明,该区域MODIS LAI产品存在明显的低估现象,参考数据和MODIS LAI数据均值分别为3.53 m2/m2和2.33 m2/m2,MODIS产品低估为34.14%。在各个偏差因素中,反射率数据的差异对结果影响最大,即MODIS地表反射率数据与Landsat 8 OLI地表反射率数据的差异造成的偏差占总偏差的57.50%;聚集效应的影响次之,占总偏差的28.33%;模型差异对结果的影响最小,占总偏差的14.17%。本研究对遥感产品真实性检验及其不确定性分析具有一定的借鉴意义。  相似文献   

5.
基于MODIS数据的火险潜在指数(FPI)及其应用研究   总被引:2,自引:0,他引:2  
死、活可燃物含水率大小决定森林点燃的难易度,是判断林火能否发生、进行林火预报的重要因子。本文应用火险潜在指数(FPI,Fire Potential Index)模型,从这2个方面分析研究可燃物湿度对林火发生的影响。利用MODIS遥感数据提取FPI模型所需因素(气象数据: 相对湿度、温度; 植被数据: 10 h时滞可燃物湿度、归一化水分指数、植被绿度),并将获得的2004年10月黑龙江省和2008年3月南方几省的气象、植被数据输入FPI模型,得到火险指数和火险等级划分。实践证明,应用该模型能够提高火险在时间和地理分布上的预报能力及预防技术。  相似文献   

6.
杜鹤娟  柳钦火  李静  杨乐 《遥感学报》2013,17(6):1587-1611
光学遥感是目前反演植被叶面积指数LAI(Leaf Area Index)的主要手段,但是当叶面积指数较大时存在光学遥感信息饱和、反演精度显著降低的问题。叶面积指数和平均叶倾角对光学、微波波段范围内反射和散射特性都有重要影响,主要表现在植被结构参数的变化可以引起冠层孔隙率和消光截面大小的改变。本文以典型农作物玉米为例,通过构建统一的PROSAIL和MIMICS模型输入参数,生成一套玉米全生长期光学二向反射率和全极化微波后向散射系数模拟库和冠层参数库。通过对模拟数据与LAI敏感性和相关性分析得出:(1)光学植被指数MNDVI(800 nm,2000 nm),在LAI为0—3时敏感,基于MNDVI与LAI的回归模型可以估算LAI变化 0.4的情况,RMSE是0.33,R2是0.958。(2)微波植被指数SARSRVI(1.4 GHz HH,9.6 GHz HV),在LAI为3—6时敏感,基于SARSRVI与LAI的回归模型可以估算LAI变化1的情况,RMSE为0.22,R2是0.9839。研究表明,采用分段敏感的植被指数,协同光学和微波遥感反演玉米全生长期叶面积指数是可行的。  相似文献   

7.
 MODIS数据Bowtie效应快速消除算法研究   总被引:7,自引:0,他引:7  
 Bowtie效应是EOS/MODIS L1B级图像数据的一个几何畸变问题,虽然目前已经提出了几种消除方法,但在计算效率和实际应用等方面还有许多限制。本文在分析国内外消除Bowtie效应的基本原理和算法的基础上,在不用星历表数据的前提下,对中国、美国和澳大利亚及其周边地区数据进行了实验,找出了这些地区Bowtie 效应的规律,提出了一种简单有效的消除算法。实验结果表明,该算法可以在不使用星历表数据情况下快速有效地消除Bowtie 效应。  相似文献   

8.
Vegetation图像植被指数与实测水稻叶面积指数的关系   总被引:9,自引:1,他引:9  
水稻的叶面积指数 (LAI)是水稻生长的一项重要参数 ,与水稻的生物量与产量直接相关。利用 1999年在江苏省江宁县实测的水稻叶面积指数与同期Vegetation/SPOT的植被指数作了对比分析 ,结果发现同期的LAI与植被指数表现相近的变化特征 ,两者具有良好的相关关系。  相似文献   

9.
 研究了雷达后向散射系数 与热带人工林叶面积指数(LAI)的相关性。该研究通过对水云模型的修正,提出了一种半经 验性的估测热带人工林叶面积指数的方法。利用Radarsat -1 SAR数据对广东雷州人工林的验证表明,其主要林种的估测相关系数 R2接近0.5。该方法充分考虑了森林的特点以及雷达成像的特性,对于估测多云雨地区热带森林叶面积指数具有一定的参考价值。  相似文献   

10.
江波 《遥感学报》2010,14(1):23-37
运用动态谐波回归模型(Dynamic Harmonic Regression,DHR)对MODIS的长时间序列的LAI产品进行分析,可以从中分离出LAI随时间变化的多年趋势、季节变化及残差等主要成分,通过建立的模型实现LAI年间变化的短时预测。本文将所述DHR模型分析方法试用于遥感数据产品随时间变化的信息提取,对LAI年间变化的预测结果证明该方法用于遥感像元尺度LAI产品的时间序列分析与预测的效果良好。  相似文献   

11.
针对非均质中低分辨率像元的叶面积指数LAI验证中如何布设基本采样单元ESU的问题,提出基于NDVI先验知识的ESU布设方法,并采用不同植被类型、不同均匀程度的地表作为模拟场,分析对比了方法的精度及稳定性。结果显示,本文方法用NDVI先验知识描述植被的生长空间分布信息,能相对准确地划分植被的不同生长水平,有效降低层内方差。在草地和森林地区的试验中,精度与稳定性均优于传统的随机采样、均匀采样和基于分类图的3种采样方法。因此,本文提出的采样方法为大尺度非均质区域LAI地面验证的采样方案提供了新的设计思路。  相似文献   

12.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is largely used to estimate Leaf Area Index (LAI) using radiative transfer modeling (the “main” algorithm). When this algorithm fails for a pixel, which frequently occurs over Brazilian soybean areas, an empirical model (the “backup” algorithm) based on the relationship between the Normalized Difference Vegetation Index (NDVI) and LAI is utilized. The objective of this study is to evaluate directional effects on NDVI and subsequent LAI estimates using global (biome 3) and local empirical models, as a function of the soybean development in two growing seasons (2004–2005 and 2005–2006). The local model was derived from the pixels that had LAI values retrieved from the main algorithm. In order to keep the reproductive stage for a given cultivar as a constant factor while varying the viewing geometry, pairs of MODIS images acquired in close dates from opposite directions (backscattering and forward scattering) were selected. Linear regression relationships between the NDVI values calculated from these two directions were evaluated for different view angles (0–25°; 25–45°; 45–60°) and development stages (<45; 45–90; >90 days after planting). Impacts on LAI retrievals were analyzed. Results showed higher reflectance values in backscattering direction due to the predominance of sunlit soybean canopy components towards the sensor and higher NDVI values in forward scattering direction due to stronger shadow effects in the red waveband. NDVI differences between the two directions were statistically significant for view angles larger than 25°. The main algorithm for LAI estimation failed in the two growing seasons with gradual crop development. As a result, up to 94% of the pixels had LAI values calculated from the backup algorithm at the peak of canopy closure. Most of the pixels selected to compose the 8-day MODIS LAI product came from the forward scattering view because it displayed larger LAI values than the backscattering. Directional effects on the subsequent LAI retrievals were stronger at the peak of the soybean development (NDVI values between 0.70 and 0.85). When the global empirical model was used, LAI differences up to 3.2 for consecutive days and opposite viewing directions were observed. Such differences were reduced to values up to 1.5 with the local model. Because of the predominance of LAI retrievals from the MODIS backup algorithm during the Brazilian soybean development, care is necessary if one considers using these data in agronomic growing/yield models.  相似文献   

13.
北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究   总被引:3,自引:1,他引:3  
以北京地区冬小麦为研究对象,利用TM传感器的光谱响应函数处理地面测量获得的冬小麦冠层光谱数据,得到对应于TM传感 器红光波段和近红外波段的反射率,进而计算出冬小麦冠层的归一化植被指数NDVI。建立了LAI与NDVI之间的不同经验关 系模型,对实验结果进行分析后得出,LAI与NDVI之间具有高度的指数相关性。  相似文献   

14.
黑河流域叶面积指数的遥感估算   总被引:7,自引:2,他引:7  
研究利用Landsat7ETM+遥感数据获取黑河流域植被叶面积指数(LAI)空间分布的可行性。该研究是基于黑河流域分布式水文模型的一个重要输入项———LAI空间分布数据的需要而产生的。文章在详尽的野外观测数据基础上,分别探究实测LAI与同时相ETM+3、4、5、7波段反射率及相关植被指数(SR、NDVI、ARVI、RSR、SAV I、PVI、GESAVI)的相关关系,率定最佳的LAI遥感反演及其空间分布方案。研究发现,针对特定的自然条件,将研究区分为植被覆盖度小的稀疏立地和覆盖度大的密集立地,分别采用土壤调节植被指数(SAVI)和大气阻抗植被指数(ARVI)进行2种林地的LAI估算最为可靠,在此基础上,提出黑河地区LAI估算及其空间分布的遥感制图方案。  相似文献   

15.
以实地测量数据为先验知识,利用AMTIS数据对顺义地区的一块小麦地进行了叶面积指数(LAI)反演实验研究,并用实地LAI数据进行了验证。通过利用实测数据作为模型参数,以及对干湿土壤分类和匹配表的调整,使反演结果和反演速度得到了提高。  相似文献   

16.
基于MODIS的LAI时间序列谱的地物分类方法研究   总被引:6,自引:0,他引:6  
利用MODIS数据所反演的每8d一景,全年共46景的时间序列叶面积指数(LAI)图像,分析江西省不同类型地物的LAI时间序列谱,并对地物进行分类。首先,利用最小噪声比变换技术(MNF)将噪声从数据中分离;然后,通过纯净像元指数(PPI)从LAI时间序列谱中提取5类主要地物类型终端单元(Endmember),从而对地物进行分类并制图;最后,结合2000年江西省兴国县1 10万比例尺的土地利用/覆盖矢量图对本研究分类结果进行检验。结果表明,该方法的地物分类精度达到74.45%,其分类方法是有效可行的。  相似文献   

17.
基于神经网络方法的芦苇叶面积指数遥感反演   总被引:2,自引:0,他引:2  
提出了一种从TM图像上获取芦苇冠层叶面积指数的方法:首先对芦苇的生长背景进行分类;然后,对不同的背景光谱利用冠层反射率(FCR)模型计算得到查找表;最后,利用实测数据和查找表中的数据作为参数进行BP神经网络模型训练,从而得到芦苇冠层LAI。结果表明,人工神经网络方法有很强的非线性拟合能力,能够消除背景对反演结果的影响,有效提高LAI反演的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号