首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic velocities under confining pressures to 10 kbar have been measured for rocks of the Ivrea—Verbano and Strona—Ceneri Zones of northern Italy, a metamorphic complex thought to represent a cross-section of the continental crust and crust—mantle boundary. Laboratory-determined compressional wave velocities for schists and gneisses of the amphibolite facies found in the upper levels of the section (having an average density of 2.74 g/cm3) average 6.45 km/sec at pressures between 6 and 10 kbar. These increase with depth to values greater than 7.1 km/sec for amphibolites and rocks of the amphibolite—granulite facies transition and to 7.5 km/sec. (average density 3.06 g/cm3) in intermediate and mafic granulite facies rocks near the base of the section. Compressional wave velocities then abruptly increase to 8.5 km/sec in ultramafic complexes near the Insubric Line. Regional geophysical surveys show that Pg is 6.0 km/sec (density of 2.7 g/cm3), P* is 7.2–7.4 km/sec (density of 3.1 g/cm3) and Pn is 8.1 km/sec, values which are in agreement with the laboratory data when effects of temperature are taken into consideration. Estimated thicknesses of exposed rock units are in reasonable agreement with thicknesses determined for crustal layers in seismic refraction experiments. The agreement between the regional crustal structure and the laboratory-determined values of velocity and density provides strong evidence for the hypothesis that the rocks of this metamorphic complex represent a cross-section of the continental crust of the Po Basin.Using the Ivrea—Verbano and Strona—Ceneri sequence as a model of the continental crust, the crust of northern Italy is shown to consist of a thick series of metamorphic rocks with greenschist facies rocks occupying the uppermost levels. These grade downward into amphibolite facies gneisses and schists with occasional granitic intrusives. The Conrad discontinuity is marked by a change from silicic and intermediate amphibolite facies gneisses to intermediate and mafic granulite facies rocks in which hydrous minerals diminish in abundance and thus represents a distinct transition in terms of both composition and metamorphic grade. The lower crust is dominated by a heterogeneous series of mafic and metapelitic rocks in the granulite facies. Importantly, metasedimentary rocks of intermediate silica content found in the complex can have compressional wave velocities equivalent to velocities in mafic rocks suggesting that the lower continental crust everywhere is not necessarily mafic in composition. Ultramafic complexes near the Insubric Line may represent the upper mantle of the continent and their setting suggests that the continental crust-upper mantle boundary is sharp and is not isochemical.  相似文献   

2.
Recently, two diverse seismic techniques were applied independently to the study of the crustal structure of the Cumberland Plateau, eastern Tennessee. One involved a reinterpretation of a refraction experiment performed in 1965 by the U.S. Geological Survey, consisting of two 400 km long, reversed refraction lines. The other entailed the inversion of broadband teleseismic P waveforms recorded at a single three-component broadband station, RSCP, located at the intersection of the two refraction profiles. A comparison of the two sets of velocity profiles revealed many similarities and some significant differences. Both sets of velocity models consist of three major crustal layers: (1) an upper crust (Vp = 6.1–6.4 km/s) down to about 17 km, (2) a mid-crust (Vp = 6.7–6.9 km/s) between 17 and 40 km depth, (3) a lower crust (Vp = 7.2–7.4 km/s) from 40 to 51 km depth. The refraction models have linear transition zones up to 11 km thick at the base of each layer, whereas the teleseismic models have more irregular transition zones at the base of the mid- and lower crust. The differences in the results of these studies are attributed to the differing frequency bandwidths of the data sets; the predominant sensitivity of the teleseismic data to shear velocities, compared to compressional velocities for the refraction data; and the different analysis procedures involved in each method. Nevertheless, the similarities indicate that the teleseismic waveform method with broadband data is capable of retreiving comparable crustal information as the Cumberland Plateau refraction survey. In addition, it provides the kind of complementary information required to constrain the composition of the continental lower crust and uppermost mantle.  相似文献   

3.
Three long, strike-parallel, seismic-refraction profiles were made on the continental shelf edge, slope and upper rise off New Jersey during 1975. The shelf edge line lies along the axis of the East Coast Magnetic Anomaly (ECMA), while the continental rise line lies 80 km seaward of the shelf edge. Below the unconsolidated sediments (1.7–3.6 km/sec), high-velocity sedimentary rocks (4.2–6.2 km/sec) were found at depths of 2.6–8.2 km and are inferred to be cemented carbonates. Although multichannel seismic-reflection profiles and magnetic depth-to-source data predicted the top of oceanic basement at 6–8 km beneath the shelf edge and 10–11 km beneath the rise, no refracted events occurred as first arrivals from either oceanic basement (layer 2, approximately 5.5 km/ sec) or the upper oceanic crust (layer 3A, approximately 6.8 km/sec). Second arrivals from 10.5 km depth beneath the shelf edge are interpreted as events from a 5.9 km/sec refractor within igneous basement. Other refracted events from either layers 2 or 3A could not be resolved within the complex second arrivals. A well-defined crustal layer with a compressional velocity of 7.1–7.2 km/sec, which can be interpreted as oceanic layer 3B, occurred at 15.8 km depth beneath the shelf and 12.9 km beneath the upper rise. A well-reversed mantle velocity of 8.3 km/sec was measured at 18–22 km depth beneath the upper continental rise. Comparison with other deep-crustal profiles along the continental edge of the Atlantic margin off the United States, specifically in the inner magnetically quiet zone, indicates that the compressional wave velocities and layer depths determined on the U.S.G.S. profiles are very similar to those of nearby profiles. This suggests that the layers are continuous and that the interpretation of the oceanic layer 3B under the shelf edge east of New Jersey implies progradation of the shelf outward over the oceanic crust in that area. This agrees with magnetic anomaly evidence which shows the East Coast Magnetic Anomaly landward of the shelf edge off New Jersey and with previous seismic reflection data which reveal extensive outbuilding of the shelf edge during the Jurassic and Lower Cretaceous, probably by carbonate bank-margin accretion.  相似文献   

4.
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.

The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.

The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth.  相似文献   


5.
During 1976 the first installment of a long range seismic profile was conducted in the North Pacific to a range of 600 km using shots to two tons in size. The line was shot to a closely-spaced array of Scripps ocean bottom seismographs and was parallel to magnetic anomaly 32 at an age of approximately 70 · 106 yr. The line extended between the Clarion and Molokai Fracture Zones and did not cross any major topographic features. Linearized and extremal travel-time inversions were conducted to provide bounds on the compressional velocity as a function of depth. The velocity does not exceed 8.4 km s−1 to a depth of 60 km at which point the data no longer provide any resolution. The constraints on the acceptable models were improved by using array processing methods to measure phase velocity and synthetic seismogram techniques to model phase and amplitude information. The oceanic crust is composed of a series of gradients with no first order discontinuities. The “Moho” is smeared out over a depth of 1.5–2.0 km even though “wide-angle reflections” from the Moho, the phase PMP, are clearly seen in the data. The upper lithosphere is characterized by a general tendency for the velocity to decrease with depth and the tendency is occasionally overwhelmed (at about 27 and 52 km depth) by rapid velocity changes perhaps associated with phase or compositional changes.  相似文献   

6.
Travel times from explosions fired on the continental shelf off the central coast of New South Wales were observed at permanent stations and spreads of seismic exploration instruments, and combined with existing results to give a seismic crustal profile across part of southeastern Australia. An intermediate layer, dipping to the southwest, underlies the surface rocks and has a P velocity of about 6–52 km./sec. Beneath Sydney, its top may either be in contact with the basin sediments at a depth of about 5 km., or separated from them by a wedge of a few kilometres of 6 km./sec. material. The Mohorovi?i? discontinuity (M) is at a depth of 25 km., dips to the southwest at about 4 degrees, and the velocity under it is about 7.86 km./sec. The depth to the top of the intermediate layer under the Snowy Mountains is about 20 km., and the revised depth to M is about 42 km. M dips at about 2° to the southwest in this region, and the velocity at the top of the mantle is 8.1 km./sec.  相似文献   

7.
This paper presents some data and results from a seismic refraction experiment, completed mainly in 1979 in the Rhenish Massif, Federal Republic of Germany and extending through Luxembourg and Belgium into the Paris Basin in France.Velocity-depth functions have been derived for each record section independently, based on the assumption that velocity varies only with depth: these models are being improved upon by time-term and ray-tracing methods capable of handling laterally varying velocity structures and by calculating synthetic seismograms.The Pg phase which is observed very clearly on all record sections represents a refracted wave, with velocity generally > 6 km/s, from depths below 1.5–5.5 km. Along the 600 km long main profile one intracrustal reflection can usually be recognized, while from the three shorter crossing profiles in the massif two intracrustal reflectors can always be seen. Beneath much of the main profile the crust-mantle boundary is either a first order discontinuity or thin (< 1 km) transition zone at ~30 km depth. However, beneath the Ardennes and West Eifel there is a 6–12 km thick transition zone before a velocity of 8.1 km/s is reached at ~36 km depth. Beneath the crossing profiles, there is generally a transition zone < 3 km thick between crust and mantle. In some cases, there can be recognized at the top of the mantle a thin high velocity layer which is underlain by a low velocity layer which, in turn, is underlain by a reflector 4–11 km below the crust-mantle boundary.  相似文献   

8.
K. Kitamura  M. Ishikawa  M. Arima   《Tectonophysics》2003,371(1-4):213-221
Ultrasonic compressional wave velocities (Vp) and shear wave velocities (Vs) were measured with varying pressure up to 1.0 GPa in a temperature range from 25 to 400 °C for a suite of tonalitic–gabbroic rocks of the Miocene Tanzawa plutonic complex, central Japan, which has been interpreted as uplifted and exposed deep crust of the northern Izu–Bonin–Mariana (IBM) arc. The Vp values of the tonalitic–gabbroic rocks increase rapidly at low pressures from 0.1 to 0.4 GPa, and then become nearly constant at higher pressures above 0.4 GPa. The Vp values at 1.0 GPa and 25 °C are 6.3–6.6 km/s for tonalites (56.4–71.1 wt.% SiO2), 6.8 km/s for a quartz gabbro (53.8 wt.% SiO2), and 7.1–7.3 km/s for a hornblende gabbro (43.2–47.7 wt.% SiO2). Combining the present data with the P wave velocity profile of the northern IBM arc, we infer that 6-km-thick tonalitic crust exists at mid-crustal depth (6.1–6.3 km/s Vp) overlying 2-km-thick hornblende gabbroic crust (6.8 km/s Vp). Our model shows large differences in acoustic impedance between the tonalite and hornblende gabbro layers, being consistent with the strong reflector observed at 12-km-depth in the IBM arc. The measured Vp of Tanzawa hornblende-bearing gabbroic rocks (7.1–7.3 km/s) is significantly lower than that Vp modeled for the lowermost crustal layer of the northern IBM arc (7.3–7.7 km/s at 15–22 km depth). We propose that the IBM arc consists of a thick tonalitic middle crust and a mafic lower crust.  相似文献   

9.
A 2‐D crustal velocity model has been derived from a 1997 364 km north‐south wide‐angle seismic profile that passed from Ordovician volcanic and volcaniclastic rocks (Molong Volcanic Belt of the Macquarie Arc) in the north, across the Lachlan Transverse Zone into Ordovician turbidites and Early Devonian intrusive granitoids in the south. The Lachlan Transverse Zone is a proposed west‐northwest to east‐southeast structural feature in the Eastern Lachlan Orogen and is considered to be a possible early lithospheric feature controlling structural evolution in eastern Australia; its true nature, however, is still contentious. The velocity model highlights significant north to south lateral variations in subsurface crustal architecture in the upper and middle crust. In particular, a higher P‐wave velocity (6.24–6.32 km/s) layer identified as metamorphosed arc rocks (sensu lato) in the upper crust under the arc at 5–15 km depth is juxtaposed against Ordovician craton‐derived turbidites by an inferred south‐dipping fault that marks the southern boundary of the Lachlan Transverse Zone. Near‐surface P‐wave velocities in the Lachlan Transverse Zone are markedly less than those along other parts of the profile and some of these may be attributed to mid‐Miocene volcanic centres. In the middle and lower crust there are poorly defined velocity features that we infer to be related to the Lachlan Transverse Zone. The Moho depth increases from 37 km in the north to 47 km in the south, above an underlying upper mantle with a P‐wave velocity of 8.19 km/s. Comparison with velocity layers in the Proterozoic Broken Hill Block supports the inferred presence of Cambrian oceanic mafic volcanics (or an accreted mafic volcanic terrane) as substrate to this part of the Eastern Lachlan Orogen. Overall, the seismic data indicate significant differences in crustal architecture between the northern and southern parts of the profile. The crustal‐scale P‐wave velocity differences are attributed to the different early crustal evolution processes north and south of the Lachlan Transverse Zone.  相似文献   

10.
The crustal structure beneath three seismic stations over Malaysia has been investigated with the application of the group velocity dispersion analysis of the northern Sumatra earthquake data which occurred on 06 April 2010. Eighteen crustal layer models are constructed to assess the structure. Group velocity dispersions have been computed for the recorded earthquake data using a graphical method and modified Haskell matrix method for the models. Both dispersions have been presented for the interpretation of crustal layers. Findings have shown four major crustal layers having thicknesses of 2.5–4.0, 2.0–5.5, 5.0–8.0, and 8.5–9.0 km, while in Terengganu, it has shown three layers. Density, shear, and compressional wave velocities used in models have suggested that the crustal structure of the northern part of Peninsular Malaysia is crystalline. Major crustal minerals are of quartz, plagioclase, and mica. Most layers seem to have upward directions toward Perak from Kedah and Terengganu.  相似文献   

11.
Laboratory samples from the upper oceanic crust (tholeiitic basalt flows) that have not been significantly weathered, hydrothermally altered or fractured have a typical Poisson's ratio of 0.30 ( ) and a compressional velocity of 6.0 km s−1; from the middle crust (dolerite sheeted dykes) a ratio of 0.28 ( ) and a velocity of 6.7 km s−1; from the lower crust (gabbro) a ratio of 0.31 ( ) and a velocity of 7.1 km s−1; and from the uppermost mantle a ratio of 0.24 ( ) and a velocity of 8.4 km s−1. These sample values are representative of the large scale insitu values for the middle and lower crust and for the upper mantle. The upper crust is modified by several processes that decrease the velocity and generally increase Poisson's ratio: (1) the formation of an irregular layer of low temperature weathering generally less than 50 m thick; (2) large scale porosity in the form of drained pillows and lava tubes, of talus and rubble and of large open fractures; (3) where there was a high sedimentation rate over the ridge that formed the crust, hydrothermal alteration and intercalation of basalt and sediments. The Poisson's ratios of both high velocity sediments and of crystalline continental crustal rocks generally are significantly lower than the ratios of oceanic crustal rocks of similar compressional wave velocity. Thus, the use of shear wave velocities should permit the separation of these different formations which frequently cannot be distinguished on the basis of compressional wave seismic refraction data alone.  相似文献   

12.
Long-period teleseismic P waves recorded at AAE (Addis Ababa, Ethiopia) and NAI (Nairobi, Kenya) show comparable Ps conversions on the radial component of ground motion. The timing and amplitude of the Ps conversions are modeled with synthetic seismograms to get an estimate of crustal thickness under both stations. Instrument response and effective source time function are removed from the data using a P-wave equalization procedure. The timing of the Ps conversions, relative to direct P, suggests that both stations have similar crustal thickness. Using constraints on crustal velocities determined by previous surface wave dispersion and travel-time studies, the Ps-P timing suggests a crust of 41 km thickness. This agrees reasonably well with previous crustal estimates. Tangential wave forms exhibit large amplitudes and are consistent at most backazimuths. However, these wave forms could not be explained with models containing simple planar dipping interfaces. The crustal thickness of 41 km taken in conjunction with the close proximity of the stations to the rift zone suggests that crustal thinning is localized to the rift itself.  相似文献   

13.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

14.
Explosion seismic experiments, gravity measurements and aeromagnetic surveys were made in the northern Mizuho Plateau including the Ongul Islands, East Antarctica, from 1979 to 1982 by the Japanese Antarctic Research Expeditions. The objective of these field operations was to determine the crustal structure along the 300 km-long oversnow traverse route between Syowa and Mizuho Stations. Three big shots were fired; at sea near Syowa Station, in an ice hole near Mizuho Station and in an ice hole between both stations. Twenty-seven temporal seismic stations were set up along the route. Gravity measurements were carried out at 30 points along this route. Aeromagnetic surveys over the area were made four times.In the seismic experiments, clear refracted waves from the Conrad (estimated depth 30 km) and the Moho (estimated depth 40 km) discontinuities were recorded. No layer with a velocity of less than 6 km/s was found in the Ongul Islands nor beneath the ice sheet in the surveyed area. The P-wave velocity in the upper layer varies with depth from 6.0 km/s on the surface to 6.4 km/s at a depth of 13 km. Comparing the observed record section with synthetic seismograms, it was derived that the Conrad was not associated with a sharp velocity discontinuity, but a linear velocity increase of 0.55 km/s in a transition zone of 2.4 km thick. Velocities of P* and Pn were determined as 6.95 km/s and 7.93 km/s assuming a flat layered structure.Bouguer gravity anomalies could not be calculated along the whole profile because of a lack of data on bedrock topography, so reduced gravity anomalies were calculated. These anomalies indicate no abrupt changes of the bedrock topography.  相似文献   

15.
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China in  相似文献   

16.
This study is based on the seismic data collected as a result of explosions carried out during the 1976 and 1978 Deep Seismic Sounding (DSS) field operations in the Koyna region. These shots were exploded from twelve shot points by the National Geophysical Research Institute along the Guhagar-Chorochi and Kelsi-Loni profiles.Refraction studies of the records reveal a two-layered crust. The top layer consists 17 km of granite and the second layer 19 km of basalt, giving the average depth of the Moho as 36 km in the region. The velocities of the phases Pg, P* and Pn have been computed as 5.82 ± 0.01, 6.61 ± 0.05 and 8.23 ± 0.05 km/sec respectively and those of Sg, S* and Sn as 3.41 ± 0.00, 4.09 ± 0.07 and 4.60 ± 0.08 km/sec respectively. The shear wave velocity in the basement rock has been found to be lower in comparison with other regions of the peninsular India.In some cases reflections were recorded both from the Moho as well as from the intermediate layer. These reveal a crustal thickness of 39 km with 19 km of granitic and 20 km of basaltic layers.Coda signal durations from DSS explosions recorded by microearthquake seismographs indicate a lateral heterogeneity in the crust on either side of Karad in an east-west direction.  相似文献   

17.
Through analysis of seismic ambient noise recorded by the GHENGIS array, we constructed a high‐resolution 3‐D crustal shear‐wave velocity model for the central Tien Shan. The obtained shear‐wave velocity model provides insight into the detailed crustal structure beneath the Tien Shan. The results obtained at shallow depths are well correlated with known subsurface geological features. Low velocities are found mainly beneath sedimentary basins, whereas high velocities are mainly associated with mountain ranges. At greater depths of ~43–45 km, high velocities were observed beneath the Tarim Basin and Kazakh Shield; these high velocities extend forward in opposite directions and tilt down towards the central Tien Shan to a depth of in excess of 50 km, most likely reflecting lateral variations in crustal thickness beneath the Tien Shan and surrounding platforms.  相似文献   

18.
The seismic data obtained during SUDETES 2003 experiment are analysed, and detailed crustal structure for profiles S02, S03 and S06 is presented using three different 2-D techniques: (1) “smooth” tomography of refracted waves travel times, (2) ray tracing of reflected and refracted waves, and (3) joint velocity and depth of reflector tomographic inversion. In spite of different interpretation techniques used, the models of the crustal structure show common characteristic features. The low velocity (Vp < 4 km/s) sedimentary layer was documented in the northeastern part of the study area. The topmost basement has in general a velocity of 5.8–6.0 km/s, and velocities at ca. 20 km depth are 6.15–6.25 km/s. The strong reflecting boundaries were found at 20–23 and 25–28 km depth with a velocity contrast about 0.4 km/s, and the highest velocities in the lowermost crust are 6.8–7.2 km/s. In general, the crust of the Bohemian Massif is slightly thicker (33–35 km) than in the northern part of the area. Velocities beneath Moho are relatively low, of 7.95 km/s. On the basis of well recorded reflected waves, mantle reflectors were discovered in the depth interval ca. 40–70 km. Apart of new results for the geology and tectonics of the area, some conclusion could be made about different techniques used. In the 2-D case the “clasical” ray tracing method with using all correlated phases gives the most adequate model of the structure, because of full, manual control of the model creation. The “smooth” first arrival travel times tomography, although very fast, is not satisfactory enough to describe the complex structure. So, the best candidate in 3-D case seems to be travel time tomography for both refracted and reflected waves in multi-layers models.  相似文献   

19.
Abyssal variations beneath the Baikal rift zone are revealed in an irregular seismic stratification of the crust, the presence of an intracrust waveguide and by the vast (> 200,000 km2) underlying area of anomalously low velocity (Pn = 7.6−7.8 km/sec) uppermost mantle. In its abyssal structure the Baikal rift is heterogeneous along the strike, with sharp changes in crustal thickness (35–50 km).Comparison of first-arrival seismic-velocity curves and also the respective velocity columns reveals the essential similarity of upper-mantle seismic cross-sections for all continental rift zones. The anomalous upper layer of the mantle (ca. 7.7 km/sec) is relatively thin (15-13 km) and can be linked with the mantle waveguide only locally.  相似文献   

20.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号