首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Layering in the lower crust   总被引:1,自引:0,他引:1  
  相似文献   

2.
Summary. The variability of deep crustal reflections in USGS line 1A across the offshore New England Appalachians shows the differing influence of Paleozoic and Mesozoic tectonic events. Mesozoic extension has not significantly modified Paleozoic thrust faults penetrating the lower crust in the northern Gulf of Maine. Mesozoic extension or Paleozoic crustal melting could explain the lower crustal character in the central Gulf.  相似文献   

3.
4.
5.
6.
7.
8.
9.
New insight into the crust and upper mantle structure under Alaska   总被引:1,自引:0,他引:1  
To better understand the seismic structure of the subducting Pacific plate under Alaska, we determined the three-dimensional P-wave velocity structure to a depth of approximately 200 km beneath Alaska using 438,146 P-wave arrival times from 10,900 earthquakes. In this study an irregular grid parameterization was adopted to express the velocity structure under Alaska. The number of grid nodes increases from north to south in the study area so that the spacing between grid nodes is approximately the same in the longitude direction. Our results suggest that the subducting Pacific slab under Alaska can be divided into three different parts based on its geometry and velocity structure. The western part has features similar to those in other subduction zones. In the central part a thick low-velocity zone is imaged at the top of the subducting Pacific slab beneath north of the Kenai Peninsula, which is believed to be most likely the oceanic crust plus an overlying serpentinized zone and the coupled Yakutat terrane subducted with the Pacific slab. In the eastern part, significant high-velocity anomalies are visible to 60–90 km depth, suggesting that the Pacific slab has only subducted down to that depth.  相似文献   

10.
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally anisotropic block structures is presented. Electrical properties of the individual homogeneous blocks are described by an arbitrary symmetric and positive-definite conductivity tensor. The problem leads to a coupled system of partial differential equations for the strike-parallel components of the electromagnetic field. E x, and H x These equations are numerically approximated by the finite-difference (FD) method, making use of the integro-interpolation approach. As the magnetic component H x, is constant in the non-conductive air, only equations for the electric mode are approximated within the air layer. The system of linear difference equations, resulting from the FD approximation, can be arranged in such a way that its matrix is symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. The algorithm is applied to model situations which demonstrate some non-trivial phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy on the relation between magnetotelluric impedances and induction arrows is studied in detail.  相似文献   

11.
12.
13.
Summary. The Moho discontinuity was modelled on the basis of the 6 DSS profiles across the Yugoslav area, by the use of regression analysis and expressed by fitting surfaces from the 1st up to the 4th degree. Their characteristics were correlated to the geological structure of the Earth's crust, with intention to point out their connection with the deformations of the Moho discontinuity.  相似文献   

14.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

15.
16.
17.
Apatite (U–Th)/He and fission track thermochronometry have been combined with 3D thermal modelling to constrain the late- to post-orogenic exhumation history of the Central Pyrenees, Spain. Data from four massifs immediately north and south of the present drainage divide of the mountain belt reveal a diachroneity in the transition from syn- to post-orogenic forcing of exhumation. Immediately south of the drainage divide, rapid exhumation of ∼1.5 mm year−1 decelerated after ∼30 Ma to ∼0.03 mm year−1. A similar transition occurred immediately north of the drainage divide at the same time. Further south, in the core of the Axial Zone antiformal stack of the Pyrenees, rapid (∼1 mm year−1), syn-orogenic exhumation continued to ∼20 Ma, but slowed to ∼0.1–0.2 mm year−1 soon after that time. This order of magnitude decrease in exhumation rates across the orogen records the diachronous transition into a post-orogenic state for the mountain belt. These data do not record rejuvenation of exhumation in Late Miocene or Pliocene times driven either by large-scale base-level change or an evolution to more erosive climatic conditions.  相似文献   

18.
19.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号