首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   

2.
Computer simulations of the impact on climate of solar variability generally fall into four categories. First, there are lower atmosphere GCM experiments, in which enhanced solar activity is represented by changes in spectrally integrated solar constant. Secondly, there are GCM studies of the dynamical response of the middle atmosphere to changes in solar ultraviolet, mainly concentrating on the northern hemisphere winter, and how these impact the troposphere. These studies have been instructive in providing an understanding of some of the mechanisms involved but, because of the very different nature of the assumptions made, give rather different suggestions as to potential patterns of change. In particular predicted zonal mean temperature changes in the lower stratosphere are usually of opposite sign in these two types of experiment. None of these GCM studies include interactive photochemistry and the third category of modelling work is concerned with the photochemical response of the middle atmosphere to enhanced solar ultraviolet. These generally employ 2D models to predict changes in ozone and other gaseous species. Recently it has been realised that the responses (to a variety of external forcings) of the lower and middle atmospheres are linked through both radiative and dynamical mechanisms and should not be viewed in isolation from each other. Thus the fourth type of modelling study, which is still in its infancy, attempts to represent solar variability by realistic changes in both irradiance and ozone concentrations. In this paper these various modelling studies are reviewed and some new results presented which confirm previous theoretical suggestions that, in the northern hemisphere winter, the atmosphere may respond to solar changes in a similar way as to the injection of volcanic aerosol. The implications of the results of the model studies for the detection of solar-induced climate change are discussed.  相似文献   

3.
Ionization of the earth’s atmosphere by solar and galactic cosmic rays   总被引:1,自引:0,他引:1  
A brief review of the research of atmospheric effects of cosmic rays is presented. Numerical models are discussed, that are capable to compute the cosmic ray induced ionization at a given location and time. Intercomparison of the models, as well as comparison with fragmentary direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and the whole range of the solar activity level variations. The effect of sporadic solar energetic particle events is shown to be limited on the global scale, even for the most severe event, but can be very strong locally in polar regions, affecting the physical-chemical properties of the upper atmosphere, especially at high altitudes. Thus, a new methodology is presented to study cosmic ray induced ionization of the atmosphere in full detail using realistic numerical models calibrated to direct observations.  相似文献   

4.
Many of the relationships used in coupled land–atmosphere models to describe interactions between the land surface and the atmosphere have been empirically parameterized and thus are inherently dependent on the observational scale for which they were derived and tested. However, they are often applied at scales quite different than the ones they were intended for due to practical necessity. In this paper, a study is presented on the scale-dependency of parameterizations which are nonlinear functions of variables exhibiting considerable spatial variability across a wide range of scales. For illustration purposes, we focus on parameterizations which are explicit nonlinear functions of soil moisture. We use data from the 1997 Southern Great Plains Hydrology Experiment (SGP97) to quantify the spatial variability of soil moisture as a function of scale. By assuming that a parameterization keeps its general form the same over a range of scales, we quantify how the values of its parameters should change with scale in order to preserve the spatially averaged predicted fluxes at any scale of interest. The findings of this study illustrate that if modifications are not made to nonlinear parameterizations to account for the mismatch of scales between optimization and application, then significant systematic biases may result in model-predicted water and energy fluxes.  相似文献   

5.
Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s−1 are calculated for temperature data series over the south of France (44°N), and on wind data series over Volgograd (49°N), respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.  相似文献   

6.
A new parameterization for atmospheric transmission and O2 photodissociation in the Schumann-Runge band region has been developed and tested with a 1D radiative-photochemical model. The parameterization is based on the O2-column along the line of sight to the Sun and the local temperature. Line-by-line calculations have served as a benchmark for testing this method and several other, commonly used, parameterizations. The comparisons suggest that differences between the line-by-line calculations and currently accepted parameterizations can be reduced significantly by using the new method, particularly at large solar zenith angles. The production rate of O-atoms computed with this method shows less than 6% deviation compared to the line-by-line calculations at any altitude, all solar zenith angles and in all seasons. The largest errors are found toward the shorter wavelengths in the Schumann-Runge region at low altitudes. Transmittance is approximated to better than 4% at any altitude and/or solar zenith angle. The total O-production rate above 20 km is approximated to better than 2%. The new parameterization is easily implemented in existing photochemical models and in many cases it may simply replace the existing algorithm. The computational effort exceeds that of other parameterizations but in view of the total computation time needed for the actual calculation of the parameterized Schumann-Runge bands this should not lead to significant performance degeneration. The first 14 coefficients of the parameterization are included in this study. Both the complete sets of coefficients and a simple algorithm can be obtained by contacting the authors. A photochemical model study shows the largest effect of the parameterization method is on odd hydrogen concentrations. Subsequent interaction with an odd oxygen family causes differences in the ozone concentrations between the different parameterizations of more than 10% at selected altitudes. Although it is already established that deficiencies in the treatment of Schumann-Runge band absorption are unlikely to explain the current underestimation of ozone concentration at the stratopause in a variety of photochemical models, this study does show that the choice of parameterization has a large impact on the accuracy of the results at large solar zenith angles and in different seasons.  相似文献   

7.
本文以MSIS90大气模式和3D NeUoG电离层模式为大气背景,用三维射线追踪法模拟研究了太阳活动强度、地方时、掩星平面方位角对弯曲角电离层残差和温度电离层残差的影响,以及电离层残差对全球日平均温度的影响.结果表明:电离层残差是平流层顶部(35~50 km)和中间层底部(50~70 km)掩星大气温度反演的主要误差.在太阳活动活跃期,电离层残差对单一掩星事件的平流层顶部平均温度的影响可达1.8 K,中间层底部平均温度的影响可达7 K;对全球日平均温度的影响在平流层顶可达-0.6 K,在70 km高度处可达1.2 K.发展新的电离层改正方法或电离层残差修正算法对提高掩星大气反演精度和全球气候监测意义重大.  相似文献   

8.
SOLAR2000 is a collaborative project for accurately characterizing solar irradiance variability across the spectrum. A new image- and full-disk proxy empirical solar irradiance model, SOLAR2000, is being developed that is valid in the spectral range of 1–1,000,000 nm for historical modeling and forecasting throughout the solar system. The overarching scientific goal behind SOLAR2000 is to understand how the Sun varies spectrally and through time from X-ray through infrared wavelengths. This will contribute to answering key scientific questions and will aid national programmatic goals related to solar irradiance specification. SOLAR2000 is designed to be a fundamental energy input into planetary atmosphere models, a comparative model with numerical/first principles solar models, and a tool to model or predict the solar radiation component of the space environment. It is compliant with the developing International Standards Organization (ISO) solar irradiance standard. SOLAR2000 captures the essence of historically measured solar irradiances and this expands our knowledge about the quiet and variable Sun including its historical envelope of variability. The implementation of the SOLAR2000 is described, including the development of a new EUV proxy, E10.7, which has the same units as the commonly used F10.7. SOLAR2000 also provides an operational forecasting and global specification capability for solar irradiances and information can be accessed at the website address of http://www.spacenvironment.net.  相似文献   

9.
Reduced‐complexity models of fluvial processes use simple rules that neglect much of the underlying governing physics. This approach is justified by the potential to use these models to investigate long‐term and/or fundamental river behaviour. However, little attention has been given to the validity or realism of reduced‐complexity process parameterizations, despite the fact that the assumptions inherent in these approaches may limit the potential for elucidating the behaviour of natural rivers. This study presents two new reduced‐complexity flow routing schemes developed specifically for application in single‐thread rivers. Output from both schemes is compared with that from a more sophisticated model that solves the depth‐averaged shallow water equations. This comparison provides the first demonstration of the potential for deriving realistic predictions of in‐channel flow depth, unit discharge, energy slope and unit stream power using simple flow routing schemes. It also highlights the inadequacy of modelling unit stream power, shear stress or sediment transport capacity as a function of local bed slope, as has been common practice in a number of previous reduced‐complexity models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Changes in solar ultraviolet flux produce changes in ozone concentration in the upper stratosphere with associated radiative and dynamical effects. At low latitudes, the response of ozone mixing ratio to solar UV variations on the time scale of the solar rotation period is well characterized observationally. In addition, there is some provisional evidence for an ozone response at intermediate periods of 60-80 days. Current two-dimensional stratospheric models simulate the observed 27-day response amplitudes and phase lags with reasonable accuracy in the upper stratosphere. The observed response of total ozone on the 27-day time scale is also in approximate agreement with the same models although observed ozone sensitivities and phase lags are slightly larger than expected theoretically. Future studies of the 27-day response at higher latitudes and altitudes are needed to test more completely our understanding of the direct effects of solar UV variability on the middle atmosphere.  相似文献   

11.
Three kinds of the widely-used cloudiness parameterizations are compared with data produced from the cloud-resolving model(CRM) simulations of the tropical cloud system. The investigated schemes include those based on relative humidity(RH), the semi-empirical scheme using cloud condensate as a predictor, and the statistical scheme based on probability distribution functions(PDFs). Results show that all three schemes are successful in reproducing the timing of cloud generation, except for the RH-based scheme, in which low-level clouds are artificially simulated during cloudless days. In contrast, the low-level clouds are well simulated in the semi-empirical and PDF-based statistical schemes, both of which are close to the CRM explicit simulations. In addition to the Gaussian PDF, two alternative PDFs are also explored to investigate the impact of different PDFs on cloud parameterizations. All the PDF-based parameterizations are found to be inaccurate for high cloud simulations, in either the magnitude or the structure. The primary reason is that the investigated PDFs are symmetrically assumed, yet the skewness factors in deep convective cloud regimes are highly significant, indicating the symmetrical assumption is not well satisfied in those regimes. Results imply the need to seek a skewed PDF in statistical schemes so that it can yield better performance in high cloud simulations.  相似文献   

12.
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.  相似文献   

13.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

14.
We derive conservative time-dependent structured discretizations and two-way embedded (nested) schemes for multiscale ocean dynamics governed by primitive equations (PEs) with a nonlinear free surface. Our multiscale goal is to resolve tidal-to-mesoscale processes and interactions over large multiresolution telescoping domains with complex geometries including shallow seas with strong tides, steep shelfbreaks, and deep ocean interactions. We first provide an implicit time-stepping algorithm for the nonlinear free-surface PEs and then derive a consistent time-dependent spatial discretization with a generalized vertical grid. This leads to a novel time-dependent finite volume formulation for structured grids on spherical or Cartesian coordinates, second order in time and space, which preserves mass and tracers in the presence of a time-varying free surface. We then introduce the concept of two-way nesting, implicit in space and time, which exchanges all of the updated fields values across grids, as soon as they become available. A class of such powerful nesting schemes applicable to telescoping grids of PE models with a nonlinear free surface is derived. The schemes mainly differ in the fine-to-coarse scale transfers and in the interpolations and numerical filtering, specifically for the barotropic velocity and surface pressure components of the two-way exchanges. Our scheme comparisons show that for nesting with free surfaces, the most accurate scheme has the strongest implicit couplings among grids. We complete a theoretical truncation error analysis to confirm and mathematically explain findings. Results of our discretizations and two-way nesting are presented in realistic multiscale simulations with data assimilation for the middle Atlantic Bight shelfbreak region off the east coast of the USA, the Philippine archipelago, and the Taiwan–Kuroshio region. Multiscale modeling with two-way nesting enables an easy use of different sub-gridscale parameterizations in each nested domain. The new developments drastically enhance the predictive capability and robustness of our predictions, both qualitatively and quantitatively. Without them, our multiscale multiprocess simulations either were not possible or did not match ocean data.  相似文献   

15.
The effect of cloud feedback on the response of a radiative-convective model to a change in cloud model parameters, atmospheric CO2 concentration, and solar constant has been studied using two different parameterization schemes. The method for simulating the vertical distribution of both cloud cover and cloud optical thickness, which depends on the relative humidity and on the saturation mixing ratio of water vapor, respectively, is the same in both approaches, but the schemes differ with respect to modeling the water vapor profile. In scheme I atmospheric water vapor is coupled to surface parameters, while in scheme II an explicit balance equation for water vapor in the individual atmospheric layers is used. For both models the combined effect of feedbacks due to variations in lapse rate, cloud cover, and cloud optical thickness results in different relationships between changes in surface temperature, planetary temperature, and cloud cover. Specifically, for a CO2 doubling and a 2% increase in solar constant, in both models the surface warming is reduced by cloud feedback, in contrast to no feedback, with the greater reduction in scheme I as compared to that of scheme II.  相似文献   

16.
Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated ‘observations’, identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.  相似文献   

17.
Development of closures and parameterizations for subgrid scale effects is a significant and longstanding problem in the numerical simulation of environmental flows. The model described herein uses a rigorous approach for developing double-averaged governing equations — first a traditional Reynolds averaging to derive the Reynolds averaged Navier-Stokes equation (RANS), then a volume average to derive a set of double-averaged equations (DANS). An existing finite element flow model is then modified to accommodate these equations. This process gives rise to several new terms that require closures, as well as a new equation for free surface elevation. This paper is directed toward model development and uses several existing closure schemes as test cases.  相似文献   

18.
In this article, we examine reflection, dissipation and attenuation of vertically propagating waves in an isothermal atmosphere under the combined effect of Newtonian cooling, thermal conduction and viscosity with a weak horizontal magnetic field. We consider the case in which the combined effect of viscosity and magnetic field is dominated by that of the thermal conduction and for small values of the Newtonian parameter. As a result, the atmosphere can be divided into three distinct regions that are connected by two transition regions. The lower and middle regions are connected by a semi-transparent barrier and the middle and upper regions are connected by an absorbing and reflecting barrier. In the connecting barriers the reflection and transmission of the waves takes place. The presence of Newtonian cooling effects on the adiabatic region, produces attenuation in the amplitudes of the waves and reduces the energy absorption in the transition regions. The reflection coefficient is determined in the lower and middle regions and the results are discussed in the context of the heating of the solar atmosphere.  相似文献   

19.
Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth’s surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January–February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen–Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.  相似文献   

20.
The present-day models of the Earth’s upper atmosphere make it possible to construct the spatial-temporal pattern of variations in the atmospheric parameters on the planetary scale in essence in the averaged form. The set of data on the satellite deceleration in the atmosphere, probe measurements aboard geophysical rockets, and radiowave incoherent scatter measurements in the Earth’s atmosphere are used to construct these standard models. The current level of the space studies makes it possible to use a new method to study the Earth’s upper atmosphere: to study the upper atmosphere by measuring the absorption of the solar XUV radiation by the Earth’s atmosphere during the solar disk observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号