首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Capturing CO2 from point sources and storing it in geologic formations is a potential option for allaying the CO2 level in the atmosphere. In order to evaluate the effect of geological storage of CO2 on rock-water interaction, batch experiments were performed on sandstone samples taken from the Altmark reservoir, Germany, under in situ conditions of 125 °C and 50 bar CO2 partial pressure. Two sets of experiments were performed on pulverized sample material placed inside a closed batch reactor in (a) CO2 saturated and (b) CO2 free environment for 5, 9 and 14 days. A 3M NaCl brine was used in both cases to mimic the reservoir formation water. For the “CO2 free” environment, Ar was used as a pressure medium. The sandstone was mainly composed of quartz, feldspars, anhydrite, calcite, illite and chlorite minerals. Chemical analyses of the liquid phase suggested dissolution of both calcite and anhydrite in both cases. However, dissolution of calcite was more pronounced in the presence of CO2. In addition, the presence of CO2 enhanced dissolution of feldspar minerals. Solid phase analysis by X-ray diffraction and Mössbauer spectroscopy did not show any secondary mineral precipitation. Moreover, Mössbauer analysis did not show any evidence of significant changes in redox conditions. Calculations of total dissolved solids’ concentrations indicated that the extent of mineral dissolution was enhanced by a factor of approximately 1.5 during the injection of CO2, which might improve the injectivity and storage capacity of the targeted reservoir. The experimental data provide a basis for numerical simulations to evaluate the effect of injected CO2 on long-term geochemical alteration at reservoir scale.  相似文献   

3.
由于盖层中存在的未知断层、裂隙或被废弃井穿透等原因,深部储存的CO2可能会发生渗漏,并向上迁移进入浅部含水层,改变地下水中酸度和溶解组分的浓度分布。国外开展CO2泄漏对浅层地下水水质影响相关研究尚处于起步阶段,且室内实验、野外试验和数值模拟等研究结果表明,CO2泄漏对浅层地下水中pH和微量重金属组分浓度影响显著,虽浓度大多未超饮用水标准,但由于含水介质之间矿物组成的差异较大,有必要针对具体场地的地下水水质和矿物组分特征进行调查,研究CO2侵入对地下水水质的影响,在总结已经达成共识和存在的问题基础上提出下一步研究趋势。  相似文献   

4.
It is challenging to predict the degree to which shallow groundwater might be affected by leaks from a CO2 sequestration reservoir, particularly over long time scales and large spatial scales. In this study observations at a CO2 enriched shallow aquifer natural analog were used to develop a predictive model which is then used to simulate leakage scenarios. This natural analog provides the opportunity to make direct field observations of groundwater chemistry in the presence of elevated CO2, to collect aquifer samples and expose them to CO2 under controlled conditions in the laboratory, and to test the ability of multi-phase reactive transport models to reproduce measured geochemical trends at the field-scale. The field observations suggest that brackish water entrained with the upwelling CO2 are a more significant source of trace metals than in situ mobilization of metals due to exposure to CO2. The study focuses on a single trace metal of concern at this site: U. Experimental results indicate that cation exchange/adsorption and dissolution/precipitation of calcite containing trace amounts of U are important reactions controlling U in groundwater at this site, and that the amount of U associated with calcite is fairly well constrained. Simulations incorporating these results into a 3-D multi-phase reactive transport model are able to reproduce the measured ranges and trends between pH, pCO2, Ca, total C, U and Cl at the field site. Although the true fluxes at the natural analog site are unknown, the cumulative CO2 flux inferred from these simulations are approximately equivalent to 37.8E−3 MT, approximately corresponding to a .001% leak rate for injection at a large (750 MW) power plant. The leakage scenario simulations suggest that if the leak only persists for a short time the volume of aquifer contaminated by CO2-induced mobilization of U will be relatively small, yet persistent over 100 a.  相似文献   

5.
Approximately 300 kg/day of food-grade CO2 was injected through a perforated pipe placed horizontally 2–2.3 m deep during July 9–August 7, 2008 at the MSU-ZERT field test to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the subsurface storage and potential leakage of CO2. As part of this multidisciplinary research project, 80 samples of water were collected from 10 shallow monitoring wells (1.5 or 3.0 m deep) installed 1–6 m from the injection pipe, at the southwestern end of the slotted section (zone VI), and from two distant monitoring wells. The samples were collected before, during, and following CO2 injection. The main objective of study was to investigate changes in the concentrations of major, minor, and trace inorganic and organic compounds during and following CO2 injection. The ultimate goals were (1) to better understand the potential of groundwater quality impacts related to CO2 leakage from deep storage operations, (2) to develop geochemical tools that could provide early detection of CO2 intrusion into underground sources of drinking water (USDW), and (3) to test the predictive capabilities of geochemical codes against field data. Field determinations showed rapid and systematic changes in pH (7.0–5.6), alkalinity (400–1,330 mg/l as HCO3), and electrical conductance (600–1,800 μS/cm) following CO2 injection in samples collected from the 1.5 m-deep wells. Laboratory results show major increases in the concentrations of Ca (90–240 mg/l), Mg (25–70 mg/l), Fe (5–1,200 ppb), and Mn (5–1,400 ppb) following CO2 injection. These chemical changes could provide early detection of CO2 leakage into shallow groundwater from deep storage operations. Dissolution of observed carbonate minerals and desorption-ion exchange resulting from lowered pH values following CO2 injection are the likely geochemical processes responsible for the observed increases in the concentrations of solutes; concentrations generally decreased temporarily following four significant precipitation events. The DOC values obtained are 5 ± 2 mg/l, and the variations do not correlate with CO2 injection. CO2 injection, however, is responsible for detection of BTEX (e.g. benzene, 0–0.8 ppb), mobilization of metals, the lowered pH values, and increases in the concentrations of other solutes in groundwater. The trace metal and BTEX concentrations are all significantly below the maximum contaminant levels (MCLs). Sequential leaching of core samples is being carried out to investigate the source of metals and other solutes.  相似文献   

6.
In order to detect hydraulic and geochemical impact on the groundwater directly above the CO2 storage reservoir at the Ketzin pilot site continuous monitoring using an observation well is carried out. The target depth (446 m below ground level, bgl.) of the well is the Exter formation (Upper Triassic, Rhaetian) which is the closest permeable stratigraphic overlying formation to the CO2 storage reservoir (630–636 m bgl. at well location). The monitoring concept comprises evaluation of hydraulic conditions, temperature, water chemistry, gas geochemistry and δ13C values. This is achieved by a tubing inserted inside the well with installed pressure sensors and a U-tube sampling system so that pumping tests or additional wireline logging can be carried out simultaneously with monitoring. The aquifer was examined using a pump test. The observation well is hydraulically connected to the regional aquifer system and the permeability of about 1.8 D is comparatively high. Between Sept. 2011 and Oct. 2012, a pressure increase of 7.4 kPa is observed during monitoring under environmental conditions. Drilling was carried out with drilling mud on carbonate basis. The concentration of residual drilling mud decreases during the pump test, but all samples show a residual concentration of drilling mud. The formation fluid composition is recalculated with PHREEQC and is comparable to the literature values for the Exter formation. The gas partial pressure is below saturation at standard conditions and the composition is dominated by N2 similar to the underlying storage reservoir prior to CO2 injection. The impact of residual drilling mud on dissolved inorganic carbon and the respective δ13C values decreases during the monitoring period. The pristine isotopic composition cannot be determined due to calcite precipitation. No conclusive results indicate a leakage from the underlying CO2 storage reservoir.  相似文献   

7.
Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975??007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300??00?mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100?mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5??5?mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (??.5 to ???mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985??007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield??based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.  相似文献   

8.
The distribution and amount of groundwater, a crucial source of Earth’s drinking and irrigation water, is changing due to climate-change effects. Therefore, it is important to understand groundwater behavior in extreme scenarios, e.g. drought. Shallow groundwater (SGW) level fluctuation under natural conditions displays periodic behavior, i.e. seasonal variation. Thus, the study aims to investigate (1) the periodic behavior of the SGW level time series of an agriculturally important and drought-sensitive region in Central-Eastern Europe – the Carpathian Basin, in the north-eastern part of the Great Hungarian Plain, and (2) its relationship to the European atmospheric pressure action centers. Data from 216 SGW wells were studied using wavelet spectrum analysis and wavelet coherence analyses for 1961–2010. Locally, a clear relationship exists between the absence of annual periodic behavior in the SGW level and the periodicity of droughts, as indicated by the self-calibrating Palmer Drought Severity Index and the Aridity Index. During the non-periodic intervals, significant drops in groundwater levels (average 0.5 m) were recorded in 89% of the wells. This result links the meteorological variables to the periodic behavior of SGW, and consequently, drought. On a regional scale, Mediterranean cyclones from the Gulf of Genoa (northwest Italy) were found to be a driving factor in the 8-yr periodic behavior of the SGW wells. The research documents an important link between SGW levels and local/regional climate variables or indices, thereby facilitating the necessary adaptation strategies on national and/or regional scales, as these must take into account the predictions of drought-related climatic conditions.  相似文献   

9.
Numerical models are essential tools in fully understanding the fate of injected CO2 for commercial-scale sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprocks. This effort requires sampling the physically measurable range of caprock and reservoir properties, and performing numerical simulations of CO2 migration and leakage. In this study, factors affecting CO2 leakage through intact caprocks are identified. Their physical ranges are determined from the literature from various field sites. A quasi-Monte Carlo sampling approach is used such that the full range of caprock and reservoir properties can be evaluated without bias and redundant simulations. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water–salt–CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through caprocks are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. The study includes an evaluation of the dependence of CO2 injectivity on reservoir properties.  相似文献   

10.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   

11.
Hydro- and isotope geochemistry are used to refine groundwater conceptual models in two areas of central Italy (Acque Albule Basin and Velino River Valley) affected by extensional Quaternary tectonics, where deep and shallow groundwater flow systems are interacting. The role of geology, of recent deposits filling the plains and of main tectonic features controlling groundwater flowpaths and deep-seated fluids emergences are investigated and discussed. Environmental isotopes (2H and 18O) confirm recharge in the surrounding carbonate aquifers, and meteoric origin of both shallow and deep groundwater. Major ion chemistry indicates a mixing between shallow Ca-HCO3 groundwater from carbonate aquifers and deep Ca-HCO3-SO4 groundwater, characterised by higher salinity and temperature and high concentration in sulphates. Isotopic composition of dissolved sulphates (δ 34S and δ 18O) and dissolved inorganic carbon (δ 13C), henceforth indicated as DIC, are used to verify the presence of different sources of groundwater, and to validate the mixing model suggested by the major ion analyses. Sulphate isotope composition suggests a marine origin for the groundwater characterised by elevated sulphate concentration, whose source is present in the deep buried sequences. Carbon isotope composition confirms the role of a DIC source associated to CO2 degassing of a deep reservoir. Groundwater conceptual models are improved underlining the importance of Plio-Pleistocene sequences filling the tectonic depression. In the Acque Albule area, the travertine plateau represents a mixing stratified aquifer, where deep groundwater contribution is spread into the shallow aquifer. The alluvial–clastic–lacustrine leaky aquifer of Velino Valley enables a complete mixing of shallow and deep groundwater allowing spot-located discharge of deep groundwater along tectonic patterns and facilitating sulphate reduction in the lacustrine sediments, explaining locally the presence of H2S.  相似文献   

12.
We use an analytical model for the post-injection spreading of a plume of CO2 in a saline aquifer under the action of buoyancy and capillary trapping to show that the spreading behavior is at all times strongly influenced by the shape of the plume at the end of the injection period. We solve the spreading equation numerically and confirm that, at late times, the volume of mobile CO2 is given by existing asymptotic analytical solutions. The key parameters governing plume spreading are the mobility ratio, M, and the capillary trapping number, Γ—the former sets the shape of the plume at the end of the injection period, and the latter sets the amount of trapping. As a quantitative measure of the dependence of the spreading behavior on the initial shape, we use a volume ratio. That is, we evolve the plume from a true end-of-injection initial shape and also from an idealized “step” initial shape, and we take the ratio of these mobile plume volumes in the asymptotic regime. We find that this volume ratio is a power-law in M, where the exponent is governed exclusively by Γ. For conditions that are representative of geologic CO2 sequestration, the ratio of mobile volumes between “true” and “step” initial plume shapes can be 50% or higher.  相似文献   

13.
This paper focuses on a small fault zone (too small to be detected by geophysical imaging) affecting a carbonate reservoir composed of porous and low-porosity layers. In a gallery located at 250 m depth, the hydraulic properties of a 20 m thick section of the reservoir affected by the studied fault are characterized by structural measurements and hydraulic injection into boreholes. We conducted electrical tomographies before and after an 18 hour-long injection, to image the fluid flow through the fault zone. Our main finding is that the damage zone displays contrasting permeability values (up to two orders of magnitude) inherited from the differential alteration of the intact rock layers. To characterize the impact of these hydraulic-property variations on the fluid flow, we carried out numerical simulations of water and supercritical CO2 injections, using the TOUGH2 code. Two damage-zone models were compared, with heterogeneous (Model 1) and homogeneous (Model 2) hydraulic properties. In Model 1, injected fluids cannot escape through the fault zone; they generate a high fluid overpressure, located in the damage-zone layers having the highest permeability and storativity. In Model 2, fluids can easily migrate; the overpressure is lower and located in the host rock along the fault zone.  相似文献   

14.
Groundwater mounds and hinge lines are important features related to the interaction of groundwater and lakes. In contrast to the transient formation of groundwater mounds, numerical simulations indicate that permanent groundwater mounds form between closely spaced lakes as the natural consequence of adding two net sinks to a groundwater flow system. The location of the groundwater mound and the position of the hinge lines between the two lakes are intimately related. As the position of the mound changes there is a corresponding shift in the position of the hinge line. This results in a change in the ratio of groundwater inflow to outflow (Qi/Qo) for the lake. The response of the lake is an increase or decrease in the lake level. Our simulations indicate that the movement of the hinge line in a natural system is a consequence of the dynamic interrelationships between recharge, the slope of the water table upgradient and downgradient of the lake, and the loss of water from the lake by evaporation. The extent of the seasonal movement of the hinge line will vary from one year to the next depending on local changes in the magnitude of the hydrologic variables. Electronic Publication  相似文献   

15.
The feasibility of CO2 storage and enhanced gas recovery (EGR) effects in the mature Altmark natural gas field in Central Germany has been studied in this paper. The investigations were comprehensive and comprise the characterization of the litho- and diagenetic facies, mineral content, geochemical composition, the petrophysical properties of the reservoir rocks with respect to their potential reactivity to CO2 as well as reservoir simulation studies to evaluate the CO2 wellbore injectivity and displacement efficiency of the residual gas by the injected CO2. The Rotliegend sediments of the Altmark pilot injection area exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. The reservoir rock reactivity to CO2 has been studied in autoclave experiments and associated effects on two-phase transport properties have been examined by means of routine and special core analysis before and after the laboratory runs. Dissolution of calcite and anhydrite during the short-term treatments leading to the enhancements of permeability and porosity as well as stabilization of the water saturation relevant for CO2 injection have been observed. Numerical simulation of the injection process and EGR effects in a sector of the Altmark field coupled with a wellbore model revealed the possibility of injecting the CO2 gas at temperatures as low as 10 °C and pressures around 40 bar achieving effective inflow in the reservoir without phase transition in the wellbore. The small ratio of injected CO2 volume versus reservoir volume indicated no significant EGR effects. However, the retention and storage capacity of CO2 will be maximized. The migration/extension of CO2 varies as a function of heterogeneity both in the layers and in the reservoir. The investigation of CO2 extension and pressure propagation suggested no breakthrough of CO2 at the prospective production well during the 3-year injection period studied.  相似文献   

16.
研究目的】查明防城港地区浅层偏酸性地下水时空分布、成因及环境影响。【研究方法】于2013—2015年间进行了浅层地下水pH值现场测试,枯水期214组,丰水期168组;讨论了其时空分布特征、成因和生态影响。【研究结果】结果表明,丰水期和枯水期偏酸性(pH <6.5)地下水样分别占79.3%和64.3%,pH值总体上丰水期低于枯水期。地下水pH值在低山区(均在5≤pH<5.5范围,平均值5.18,n=4)<丘陵区(大多数5≤pH<6.5,平均值5.18,n=202)<平原区(大多数6.5≤pH<8.5,平均值6.77,n=8)。【结论】偏酸性地下水成因主要与偏酸性大气降水有关,其次与酸性的包气带介质及硫化物矿物的氧化有关。偏酸性大气降水入渗补给是丰水期pH值低于枯水期的主要原因。相比较而言,潮汐作用使得江平地区地下水pH值升高。偏酸性地下水影响饮水安全(研究区枯水期仅20.6%的样品pH值符合生活饮用水标准),促进某些有害组分的释放,腐蚀地下管网和建筑桩基等设施。偏酸性地下水向地表水排泄亦可对地表水环境和地表生态系统产生影响。本研究有助于研究区水资源管理。创新点:本研究利用地质调查项目数据优势,系统阐述了防城港地区浅层偏酸性地下水时空分布特征;偏酸性地下水的成因与偏酸性大气降水、酸性包气带介质和硫化物矿物氧化有关;偏酸性地下水对人类健康、地下设施和生态环境具有潜在影响。  相似文献   

17.
《International Geology Review》2012,54(14):1792-1812
Abundant crude oil and CO2 gas coexist in the fourth member of the Upper Cretaceous Quantou reservoir in the Huazijing Step of the southern Songliao Basin, China. Here, we present results of a petrographic characterization of this reservoir based on polarizing microscope, X-ray diffraction, fluid inclusion, and carbon–oxygen isotopic data. These data were used to identify whether CO2 might be trapped in minerals after the termination of a CO2-enhanced oil recovery (EOR) project, and to determine what effects might the presence of CO2 have on the properties of crude oil in the reservoir. The crude oil reservoir in the study area, which coexists with mantle-derived CO2, is hosted by dawsonite-bearing lithic arkoses and feldspathic litharenites. These sediments are characterized by a paragenetic sequence of clay, quartz overgrowth, first-generation calcite, dawsonite, second-generation calcite, and ankerite. The dawsonite analysed during this study exhibits δ13 C (Peedee Belemnite, PDB) values of ?4.97‰ to 0.67‰, which is indicative for the formation of magmatic–mantle CO2. The paragenesis and compositions of fluid inclusions in the dawsonite-bearing sandstones record a sequence of two separate filling events, the first involving crude oil and the second involving magmatic–mantle CO2. The presence of prolate primary hydrocarbon inclusions within the dawsonite indicates that these minerals precipitated from oil-bearing pore fluids at temperatures of 94–97°C, in turn suggesting that CO2 could be stored as carbonate minerals after the termination of a CO2-EOR project. In addition, the crude oil in the basin would become less dense after deposition of bitumen by deasphalting the injection of CO2 gas into the oil pool.  相似文献   

18.
In a natural analog study of risks associated with carbon sequestration, impacts of CO2 on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO2, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of brackish waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO2 influx. Analysis of trends in dissolved trace elements, chloride, and CO2 reveal no evidence of in situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO2-rich brackish water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO2 leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO2 carrier fluids, such as brackish waters, pose in monitoring impacts of geologic sequestration.  相似文献   

19.
Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.  相似文献   

20.
In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl, Ca/(Ca + Mg)/SO4/(SO4 + HCO3), and environmental isotopes (δ18O, δ2H, 87Sr/86Sr, δ34S and δ13C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号