首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive and systematic study to understand various geochemical processes as well as process drivers controlling the water quality and patterns of the hydrochemical composition of river water in Muthirapuzha River Basin, MRB (a major tributary of Periyar, the longest river in Kerala, India), was carried out during various seasons, such as monsoon, post-monsoon and pre-monsoon of 2007–2008, based on the data collected at 15 monitoring stations (i.e., 15 × 3 = 45 samples). Ca2+ and Mg2+ dominate the cations, while Cl? followed by HCO3 ? dominates the anions. In general, major ion chemistry of MRB is jointly controlled by weathering of silicate and carbonate rocks, which is confirmed by relatively larger Ca2+ + Mg2+/Na+ K+ ratios as well as Ca2+/Na+ vs. Mg2+/Na+ and Ca2+/Na+ vs. HCO3 ?/Na+ scatter plots. The relationship between Cl? and Na+ implies stronger contributions of anthropogenic activities modifying the hydrochemical composition, irrespective of seasons. The water types emerged from this study are transitional waters or waters that changed their chemical character by mixing with waters of geochemically different ionic signatures. However, various ionic ratios, hydrochemical plots and graphical diagrams suggest seasonality over the hydrochemical composition, which is solely controlled by the rainfall pattern. Relatively higher pCO2 indicates the disequilibrium existing in natural waterbodies vis-à-vis the atmosphere, which is an outcome of both the contribution of groundwater to stream discharge and anthropogenic activities. Hence, continuous monitoring of hydrochemical composition of mountain rivers is essential in the context of climate change, which has serious implications on tropical mountain fluvial-hydro systems.  相似文献   

2.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   

3.
4.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

5.
A family of geophysical lineaments have been identified in ~15,000 km~2 in central Kerala between9 30'N to 10 45'N and 76 00'E to 77°30′E,integrating geophysical data with geological and geomorphological features. The characteristics of these lineaments in the magnetic and gravity fields and their derivatives have been analysed. The evolution of the lineaments has been traced to the temporal phases of global evolution of the region. A group of these faults have formed by reactivation of the deep-seated distensional fractures associated with and accompanying dyke emplacements during the episodic breakup of Gondwana at ~90 and 65 Ma under distinctive mantle thermal regimes. It is possible that reactivation of these distensional faults may have started during the cooling interval of time between the two distensions in the 90 and 65 Ma and post 65 Ma periods and later in the Cenozoic, when the lineaments were enlarged to their present dimension, possibly under the influence of forces that led to the uplift of the western Ghats. These may extend down to the crust-mantle interface. A cluster of youngergeophysical lineaments has been generated by reactivation along the weak planes of transformation of the charnockitic rocks of the Precambrian. They seem to have a strike-slip character. They are devoid of any dyke association and were formed on a cold crust. They may be confined to the upper-middle crust.They were generated in the high intensity intra-plate palaeo-stress fields of the triple forces arising from(1) the back-thrust from the Himalayan Collision;(2) the impact of epeirogenic forces and related isostatic uplift of the Western Ghats and(3) the flexural isostatic uplifts due to surface loads of late Mesozoic basaltic lavas and Cenozoic sedimentation in the coastal rifted basins in late Cenozoic, probably in the time span of 20 Ma to the present, when the palaeostress fields were most intense.  相似文献   

6.
7.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   

8.
Available literature reveals that little work has been done on the origin of springs in a basaltic terrain. Close examination of such springs in about 2,000 km2 of the upper Koyna River basin in the Deccan Trap country of the Western Ghats (hills), India, reveals that their origins are dependent on the lithologic character of different basaltic flow units and the existing physiography. Although rainfall, its seasonality and areas of recharge, play vital roles in the recharge of these springs, their yields are also controlled by lithological variations and hydraulic characteristics of their source-aquifers. Chemical concentrations of these springs are heavily dependent on the lithological compositions of the source-aquifers and the residence time of groundwater in these aquifers. Currently, basaltic springs are classified with those issuing from other terrains. However, because the emergence of groundwater in the form of springs is largely controlled by the lithology and the resulting water-bearing properties of the formations, a new classification scheme is proposed that classifies the springs on the basis of their source-aquifers. While tapping springs for drinking/irrigation purposes, it must be remembered that they also sustain thousands of other life forms vital to a balanced ecosystem. Changes in the uses of these springs may also affect other human communities downstream. Therefore, before developing spring flow, a trade-off must be made considering local needs and downstream users. Emphasizing only local human needs may lead to severe intercommunity conflict and negative environmental consequences. Electronic Publication  相似文献   

9.
Abstraction of groundwater resources is increasing over the years to meet its ever-increasing demand for industrial, agricultural and domestic purposes throughout the world. The scenario is even worse in the east flowing rivers of the Western Ghats, where the demand of water is high under changing climatic conditions. Such situation may affect the groundwater resources of the river basin on a long run. The aim of the present study is to characterize the geochemistry of groundwater in Tamiraparani sub-basin through geochemical modeling and deduce the ionic interactions with the aid of geostatistical and multivariate statistical techniques. A total of 40 groundwater samples from shallow aquifers were collected randomly throughout the sub-basin for assessing its physicochemical parameters, which include physical properties of the water, major ions and nutrients. Two major hydrogeochemical facies were identified such as mixed Ca-Mg-Cl and Ca-HCO3 groups. The nutrients derived from agricultural runoff, urban discharge and organic decomposition alters the nutrient level in the groundwater. The dissolution/precipitation of minerals such as calcite and dolomite controls the chemical constituents of the groundwater. The multivariate statistical analysis indicates that natural weathering of source rocks is the main contributors of ions in the groundwater followed by anthropogenic activities such as agricultural practices and urbanization. The insights obtained from this study can be helpful for sustainable groundwater management and long-term monitoring studies.  相似文献   

10.
Geochemical investigations of Wai sub-group volcanic flows (in and around Mahabaleshwar) have been undertaken to determine the petrogenetic processes involved in the formation of volcanic flows. In comparison to the Ambenali Formation, Mahabaleshwar Formation flows were affected more by crustal materials, which left a signature consisting of enriched levels of K, Rb, Ba, Ti and P. Ratios of Nb/Zr and Ba/Y were sensitive to fractional crystallization; Mahabaleshwar formation flows showed the highest Nb/Zr ratios. Ba was noted as a boundary marker element between the Ambenali (47.3 to 63.9 ppm Ba) and Mahabaleshwar (83.1 to 180 ppm) formations. The general trend of incompatible element concentrations increasing from lower Poladpur to upper Mahabaleshwar flows with increasing Zr and the linear array on the plot are consistent with the fractionation of olivine and clinopyroxene. MgO ranged from 4.8 to 7.1 wt%, TiO2 from 1.8 to 4.6 wt%, SiO2 from 47 to 52 wt% and Al2O3 from 12 to15.5 wt%. The Mg number (Mg#) was much lower, ranging from 36 to 50. The K2O/ P2O5 ratio showed the role of assimilation in the basaltic flows. TiO2, Y, Zr, Nb and Mg# were used to determine fractional crystallization, whereas Ba, Rb, K2O and SiO2 were used for monitoring the fractional crystallization effects of crustal contamination. The range of Zr/Y and TiO2 > 1.8 wt% appears to have been generated by fractional crystallization starting from enriched mafic precursors.  相似文献   

11.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

12.
The Western Ghats (WG) is one of the Great Escarpments of the world that developed and persisted for the last ~60 Ma at the passive Western Continental Margin of India (WCMI). Like many such escarpments, the origin and persistence of the WG cannot be explained by a single mechanism, either lithosphere-asthenosphere or surficial processes, and hence, these are debated. Here I suggest a unified multistage model for the evolution of WG based on the available geophysical and geological data, and link its origin and persistence through possible underplating and detachmentcontrolled mid-crustal ductile flow with the characteristics of the Deccan plateau and the offshore region. The implications of the model for lithosphere-asthenosphere dynamics of the Deccan plateau and Stable Continental Region (SCR) seismicity are discussed.  相似文献   

13.
This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections  相似文献   

14.
Several horizons of a unique lithotype called “chertbreccia” are interbedded within the Proterozoic platform sediments of the Peninsular India. These cherty rocks with brecciated texture appearing as blocky masses were earlier diversely interpreted as being products of disparate processes such as fault-zone breccias, collapse breccias, and so on. Two of these horizons, one from the Kaladgi Basin (Dharwar Craton) and the other from the Dhar Forest Inlier of the Vindhyanchal Basin (Bundelkhand — Aravalli Craton) are compared in context of their geological setting, field relations and petrological constitution. A model of the mode of development of these peculiar rocks is reconstructed, taking into account their characters and limitations of previous interpretations. They are interpreted as transported debris deposits of syntectonogenic material released during the episodic activity of the growth faults of the Kaladgi and Vindhyanchal Basins that was diagenetically silicified.  相似文献   

15.
Kerala is the third most densely populated state in India. It is a narrow strip of land, of which 47% is occupied by the most prominent orographic feature of peninsular India, The Western Ghats mountain chain. The highlands of Kerala experience several types of landslides, of which debris flows are the most common. They are called “Urul Pottal” in the local vernacular. The west-facing Western Ghats scarps that runs the entire extent of the mountain system is the most prone physiographic unit for landslides. The highlands of the region experience an annual average rainfall as high as 500 cm through the South-West, North-East and Pre-Monsoon showers. A survey of ancient documents and early news papers indicates a reduced rate of slope instability in the past. The processes leading to landslides were accelerated by anthropogenic disturbances such as deforestation since the early 18th century, terracing and obstruction of ephemeral streams and cultivation of crops lacking capability to add root cohesion in steep slopes. The events have become more destructive given the increasing vulnerability of population and property. Majority of mass movements have occurred in hill slopes >20° along the Western Ghats scarps, the only exception being the coastal cliffs. Studies conducted in the state indicates that prolonged and intense rainfall or more particularly a combination of the two and the resultant pore pressure variations are the most important trigger of landslides. The initiation zone of most of the landslides was typical hollows generally having degraded natural vegetation. A survey of post-landslide investigation and news paper reports enabled the identification of 29 major landslide events in the state. All except one of the 14 districts in the state are prone to landslides. Wayanad and Kozhikode districts are prone to deep seated landslides, while Idukki and Kottayam are prone to shallow landslides.  相似文献   

16.
The objective of this study is to apply and test a simple parametric water balance model for prediction of soil moisture regime in the presence of vegetation. The intention was to evaluate the differences in model parameterization and performance when applied to small watersheds under three different types of land covers (Acacia, degraded forest and natural forest). The watersheds selected for this purpose are located in the sub-humid climate within the Western Ghats, Karnataka, India. Model calibration and validation were performed using a dataset comprising depth-averaged soil moisture content measurements made at weekly time steps from October 2004 to December 2008. In addition to this, a sensitivity analysis was carried out with respect to the water-holding capacity of the soils with the aim of explaining the suitability and adaptation of exotic vegetation types under the prevailing climatic conditions. Results indicated reasonably good performance of the model in simulating the pattern and magnitude of weekly average soil moisture content in 150 cm deep soil layer under all three land covers. This study demonstrates that a simple, robust and parametrically parsimonious model is capable of simulating the temporal dynamics of soil moisture content under distinctly different land covers. Also, results of sensitivity analysis revealed that exotic plant species such as Acacia have adapted themselves effectively to the local climate.  相似文献   

17.
The intermontane basins of the Central Andes, formed from the first episode of the andine tectonic (peruvian phase, Santonian), are characterized by a clastic continental sedimentation, settled in a compressive tectonic context and containing volcanic intercalations. The two basins presented in this paper, have distinct ages and a different geodynamic context, each:
  1. The Cuzco-Sicuam Basin, Maestrichtian-Paleocene in age, is a back-arc basin. A coarse grained red bed sedimentation appeared at the same time as the synsedimentary tectonic and volcanic activity increased in the source area.
  2. The Moquegua Basin, Oligocene in age, is a fore-arc basin. After a compressive phase, the northeastern border of the basin shows high mobility, characterized by superposed alluvial fans. Within the basin, the coarse grained sediments are associated with volcanic tuffs.
In the two basins, the tectonism, the volcanism and the coarse grained sedimentation occured simultaneously. The coarse grained sedimentation does not appear to be linked with climatic changes, but with the increasing mobility of the source area. The relationship between tectonic regime and volcanic activity in the basin and in the source area is considered.  相似文献   

18.
19.
The Narippara area, which is nestled in the Banasuramala of Wayanad district, witnessed initiation of landslide, which was manifested in the form of curvilinear cracks running for a length of 170 m. In the event of continuous rainfall, these cracks may get reactivated, leading to a major landslide. This could affect the life and livelihood of a large number of families living downslope and could cause extensive damage to property. Extensive mining for building stones in this area has been a cause for much concern amongst the local population. This study aims at understanding the impact of quarrying on slope stability through geotechnical, geophysical and environmental impact assessment (EIA). Geotechnical analysis shows that the area is stable under dry condition but parts of the area are critical under wet and saturated conditions. Moreover, resistivity studies revealed that the cracks that had developed extend up to the bedrock and the suspected mechanism of failure will be translational in nature. EIA reveal that due to quarrying and mining operations, the possibility of land disturbances cannot be ruled out during the monsoon season. In the present study, an attempt is also made to suggest management strategies for mitigating further effects of landslides in this area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号