首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uniaxial compressive strength of intact rock is the main parameter used in almost all engineering projects. The uniaxial compressive strength test requires high quality core samples of regular geometry. The standard cores cannot always be extracted from weak, highly fractured, thinly bedded, foliated and/or block-in-matrix rocks. For this reason, the simple prediction models become attractive for engineering geologists. Although, the sandstone is one of the most abundant rock type, a general prediction model for the uniaxial compressive strength of sandstones does not exist in the literature. The main purposes of the study are to investigate the relationships between strength and petrographical properties of sandstones, to construct a database as large as possible, to perform a logical parameter selection routine, to discuss the key petrographical parameters governing the uniaxial compressive strength of sandstones and to develop a general prediction model for the uniaxial compressive strength of sandstones. During the analyses, a total of 138 cases including uniaxial compressive strength and petrographic properties were employed. Independent variables for the multiple prediction model were selected as quartz content, packing density and concavo–convex type grain contact. Using these independent variables, two different prediction models such as multiple regression and ANN were developed. Also, a routine for the selection of the best prediction model was proposed in the study. The constructed models were checked by using various prediction performance indices. Consequently, it is possible to say that the constructed models can be used for practical purposes.  相似文献   

2.
Uniaxial compression tests were performed on different categories of weathering of three lithological units: Malanjkhand granite; Nagpur basalt; and Delhi quartzite, occurring in central and northern parts of India. The deformational behaviour is studied in terms of variation in tangent modulus (Et50) and initial modulus (Ei) due to weathering. The power relationship between uniaxial compressive strength (σc) and Et50 shows strong correspondence for weathering sequence of common rock types. This relationship has been established by regression analysis and significant correlation parameter (coefficient of determination, r2=0.87) for crystalline rocks. It is shown that there is a systematic decrease in stiffness ratio, that is, ratio of tangent modulus and uniaxial compressive strength with increased weathering state. Comparison of Et50 and Ei values has shown that Et50 decreases more gradually than Ei, and reduction is more drastic for Ei values with an increased degree of weathering in all the three rock types. The mode of failure has been found to be influenced by weathering extent in rocks. A brief account is given of the intrinsic characteristics of fresh and weathered rocks and mineralogical changes produced by weathering investigated quantitatively. Correlation drawn between the petrographical and mechanical indices has shown that mechanical properties are apparently dependent on the intrinsic characteristics of weathered rocks.  相似文献   

3.
Salt crystallization is the most significant factor in the degradation of the natural stones used in cultural and historical structures. Stones decay partially or fully as a result of this exposure. This study is the investigation of the degradation of historical monuments (underground cities and semi-underground settlements) carved in pyroclastic rocks in Cappadocian Region which takes part in World Cultural Heritage List. Samples of pyroclastic rocks were collected from six different quarries in Cappadocia, Turkey. To understand the contribution of salt crystallization to this weathering, dry weight loss (DWL) tests were performed on these samples. To investigate the correlations between salt crystallization and other rock properties, porosity, water absorption, ultrasonic velocity, uniaxial compressive strength, Brazilian tensile strength, and point load index were also measured. During the SC process of weathering, the results showed that porosity and water absorption increased for all the samples whereas ultrasonic velocity, uniaxial compressive strength, tensile strength, and point load index values decreased. Evaluation of the data obtained from these tests showed very high logarithmic correlations between the dry weight loss values and the mechanical properties.  相似文献   

4.
Weathering processes cause important changes in the engineering properties of rocks. In this study, dunites in the Bursa region in western Turkey were investigated and the changes in engineering properties due to weathering were evaluated. The studies were initiated with field observations including measurement of the characteristics of discontinuities such as spacing, aperture, fill material, roughness, and Schmidt hammer rebound value. Subsequently, laboratory studies were conducted in two stages. The first stage comprised mineralogical, petrographic, and chemical analyses. The second stage included physicomechanical tests to determine specific gravity, unit weights, water absorption, effective porosity, uniaxial compressive strength, P-wave velocity, and slake-durability index. According to these evaluations, the changes in engineering properties were determined to be mostly related to serpentinization at every stage of weathering. The most suitable parameters for characterizing the degree of weathering of the studied dunites are loss-on-ignition values, specific gravity, unit weight, water absorption, and effective porosity.  相似文献   

5.
Summary  A weathering classification for granitic rock materials from southeastern Brazil was framed based on core characteristics. The classification was substantiated by a detailed petrographic study. Indirect assessment of weathering grades by density, ultrasonic and Schmidt hammer index tests was performed. Rebound values due to Schmidt hammer multiple impacts at one representative point were more efficient in predicting weathering grades than averaged single impact rebound values, P-wave velocities and densities. Uniaxial compression tests revealed that a large range of uniaxial compressive strength (214–153 MPa) exists in Grade I category where weathering does not seem to have played any role. It was concluded that variability in occurrences of quartz intragranular cracks and in biotite percentage, distribution and orientation might have played a key role in accelerating or decelerating the failure processes of the Grade I specimens. Deterioration of uniaxial compressive strength and elastic modulus and increase in Poisson’s ratio with increasing weathering intensity could be attributed to alteration of minerals, disruption of rock skeleton and microcrack augmentation. A crude relation between failure modes and weathering grades also emerged. Correspondence: Prof. T. B. Celestino, Universidade de S?o Paulo, S?o Carlos, Brazil  相似文献   

6.
Weathering processes cause important changes in rock porosity. Besides porosity, distribution of pore sizes is significant for the identification of changes due to rock weathering and its effects on fabric. The formation of secondary porosity in different types of rock taken from different parts of Turkey was examined and the results are presented in this paper. The aim of this study was to observe changes in porosity due to weathering. Effective porosity, mercury intrusion porosimetry, and optical and scanning electron microscopy were used to evaluate the changes in pore geometry of the rocks. Additionally, the dry density, water absorption and uniaxial compressive strength of the rocks at different weathering stages were determined. Analysis of experimental data showed that microstructure of the rocks in relation to weathering is the main feature, which controls their physical and mechanical properties. The study revealed that fabric characteristics, particularly the pore and fracture geometry are very important characteristics for assessment of the behaviour of weathered rock.  相似文献   

7.
岩体风化程度的划分对岩体质量的准确分级及建基面的确定具有重要意义。但定性划分岩体风化程度往往受到主观因素的制约,存在评价时的任意性,且不能客观反映岩体风化的本质特征。而选取一些能反映岩体风化特征的指标对岩体进行风化量化分级,则较为准确、客观。论文结合西南某大型电站基本情况,根据国内外的研究成果,选取岩石质量指标(RQD)、裂隙间距(D)、波速比(Bv)、完整性系数(Kv)、岩石单轴抗压强度及2m硐段裂隙数等适合坝区岩体定量风化分带的特征指标,对主要指标进行相关性分析。最后根据选定指标定量划分出坝区岩体风化分带,以期对类似工程有一定的指导意义。  相似文献   

8.
工程上常见的灰岩在不同风化程度下的抗剪强度特性鲜有研究,也没有快速评估灰岩抗剪强度的数学模型,不能满足大量灰岩工程灾害防治的需要。为探究风化程度对灰岩抗剪强度特性的影响规律,试验选取现场新鲜灰岩试样,通过开展室内风化模拟试验制备不同风化程度的岩样,进行室内岩石强度剪切试验,探究灰岩剪切应力-剪切位移关系曲线的变化规律和...  相似文献   

9.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

10.
Quantitative determination of the degree of chemical weathering of rocks is a fundamental task in environmental and engineering geology, and many weathering indices based on whole-rock chemistry have been proposed. However, most classical indices are of limited application to granitoids in a wide area, because these lithotypes generally exhibit wide chemical variation arising from their petrogenesis. The chemical evolution produced during rock weathering, therefore, overprints pre-existing magmatic chemical variation. This problem can cause many classical weathering indices to yield misleading results. This study proposes a method that compensates for the influence of petrogenesis on calculation of the weathering index. The method is based on a bivariate plot of the magmatic chemical variation (MCV) in granitoids, and the degree of chemical weathering (DCW). The MCV axis must be based on an element that reflects magmatic processes and is also relatively immobile during rock weathering. In this study TiO2 contents are utilized for the MCV. The DCW axis is fundamentally defined by the ratios of more-mobile to less-mobile elements during weathering, and hence many classical indices can be applied. The improved value of the degree of chemical weathering (DCWi) for a weathered rock is derived by:
DCWi=s×(MCVCV-MCV1)+DCW1DCWi=s×(MCVCV-MCV1)+DCW1
where MCV1 is the measured composition (e.g. TiO2 content) of the weathered rock. DCW1 denotes the ratios of more-mobile to less-mobile elements of the weathered rock. The “s” parameter is the slope of the least square linear regression for fresh granitoids in the MCV–DCW relationship. MCVCV is a correction factor which is given by the average point on the MCV axis (e.g. average TiO2) of the fresh rocks. This method is useful for evaluating the degree of weathering of various granitoids, and enhances the practical application of many weathering indices.  相似文献   

11.
Granitic rocks show a variety of engineering properties that may affect quarrying operations, tunneling, mining, slope stability and the use of rock as a construction material. The physical and mechanical properties are a function of the mineralogical and textural characteristics of the rock. The purpose of this study is to apply correlation analysis to investigate the relationships between petrographical and engineering properties of granitic rocks. A variety of granitic rock samples from different parts of Turkey were subjected to petrographic studies. The same samples were then tested to determine specific gravity, dry and saturated unit weight, water absorption, effective and total porosity, sonic velocity, Schmidt hardness, point load strength index, uniaxial compressive strength, tensile strength and modulus of elasticity. The relationships between these properties and the petrographical characteristics are described by simple regression analyses. The study revealed that the influence of the textural characteristics on the engineering properties appears to be more important than the mineralogy. It also determined that the types of contacts, grain (mineral) shape and size significantly influence the engineering properties of the granitic rocks.  相似文献   

12.
Preparing high-quality samples, which can fulfill testing standards, from weak and block-in-matrix conglomerate for laboratory tests, is a big challenge in engineering projects. Hence, using indirect methods seems to be indispensable for determination uniaxial compressive strength (UCS). The main objective of this study is to estimate the relation between sonic velocity (Vp), Schmidt hammer rebound number (SCH) and UCS. For this reason, some samples of weak conglomeratic rock were collected from two different sites of dam in Iran (Bakhtiari and Hezardareh Formations). In order to evaluate the correlation, the measured and predicted values utilizing simple and multivariate regression techniques were examined. To control the performance of the proposed equation, root mean square error (RMSE) and value accounts for (VAF%) were determined. The VAF% and RMSE indices were computed as 94.34 and 1.56 for the relation between Vp and UCS from simple regression model. These were 94.39 and 1.6 between SCH and UCS, while these were 97.24 and 1.34 for uniaxial compressive strengths obtained from multivariate regression model.  相似文献   

13.
岩石风化与岩石化学成分的变化研究   总被引:10,自引:0,他引:10  
研究岩石风化过程中岩石化学成分的变化规律,对于进一步研究岩石的风化机理以及岩石的物理力学性质变化过程有着十分重要的意义.本文通过对湘西地区陡山沱组黑色岩石不同风化程度的化学成分分析研究表明,岩石中的化学成分将随风化的进行而不断发生变化,在一定程度上反映了陡山沱组黑色岩石风化过程中其化学成分的变化趋势.  相似文献   

14.
Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23% and 35.17% of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock.

The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.  相似文献   


15.
The influence of pore structure, water transport properties and rock strength on salt weathering is evaluated by means of a thorough rock characterisation and a statistical analysis. The pore structure was described in terms of its porosity, pore size distribution (quantified by mean pore radius) and specific surface area, density and water transport was characterised by means of water permeability (saturated flow) and capillary imbibition (unsaturated flow); whilst the rock strength test was carried out using uniaxial compressive strength, compressional and shear wave velocities, dynamic elastic constants and waveform energy and attenuation were obtained from the digital analysis of the transmitted signal. A principal component analysis and a stepwise multiple regression model was carried out in order to examine the direct relationships between salt weathering and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical meaning. The first component is mostly linked to mechanical properties, porosity and density whereas the second component is associated with the water transport and pore structure. Salt weathering, quantified by the percentage of weight loss after salt crystallisation, was included in both principal components, showing its dependence on their petrophysical properties. The stepwise multiple regression analysis found that rock strength has a predominant statistical weight in the prediction of salt weathering, with a minor contribution of water transport and pore structure parameters.  相似文献   

16.
17.
采场顶板稳定性动态预测及控制研究   总被引:3,自引:1,他引:3  
运用人工神经网络技术,综合岩石介质条件、赋存环境条件以及工程因素3大方面的5个指标,即岩石单轴抗压强度、岩石质量指标、煤体强度、地下水状况、工作面月推进速度,建立了采场顶板稳定性动态预测模型。并以工作面月推进速度40m、60m、80m、100m分别预测了新集井田顶板稳定性分区。根据5个指标因素分析结果,对顶板稳定性影响程度由大到小排序为岩石质量指标、地下水状况、岩石单轴抗压强度、煤体强度、工作面月推进速度。  相似文献   

18.
Major element compositions of 36 bulk samples and 41 clay samples, which were obtained from 47 topsoils collected in monsoonal eastern China, were investigated with conventional wet chemistry and X-ray fluorescence (XRF) spectrometry, respectively. Based on major element analyses, the mobility of major elements and latitudinal distributions of SiO2/Al2O3 ratio, chemical index of alteration (CIA), chemical index of weathering (CIW) and weathering index of Parker (WIP) were analyzed. Meanwhile, the suitability of these chemical weathering indices to topsoils in monsoonal eastern China and its controls were discussed.These investigations indicate that Na, K, Ca, Mg, and Si are relatively depleted, while Mn, P, Fe and Ti are relatively enriched in topsoils of the study area by comparison with their contents in the upper continent crust (UCC), and that alkali metal (Na, K) and alkaline earth metal (Ca, Mg) elements are generally easier to be depleted from their parent materials than other major elements during chemical weathering. The latitudinal distributions of CIA, CIW and WIP show that they are suitable to both bulk and clay samples, but SiO2/Al2O3 is only suitable to clay samples, not suitable in bulk ones. All these investigations indicate a significant dependence of grain-size in major element abundance and latitudinal distributions of SiO2/Al2O3, CIA, CIW and WIP, but parent rock type has little effect on them, except its impact on the latitudinal distribution of WIP in clay samples. The significant grain-size dependence probably indicates the presence of unaltered minerals in bulk samples, thus we suggest that clay samples are more suitable to investigating chemical weathering of sediments on continents than bulk samples. The trivial effect of parent rock type probably indicates a relatively uniform chemical weathering on various parent rocks. Correlation analyses indicate that climate is the dominant control of chemical weathering of topsoils in the study area, and the significant latitude effect indicated by the spatial distributions of chemical weathering indices actually reflect the climate control on chemical weathering of topsoils.Chemical weathering indices actually reflect the integrated weathering history in the study area. Besides the dominant control of climate, other factors like tectonics, parent rock, biology, landform and soil depth and age might also have some effect on the chemical weathering of topsoils in the study area, which needs further research.  相似文献   

19.
针对目前遥感技术手段难以快速划分岩石风化程度的问题,以花岗岩为研究对象,通过分析风化程度与坡度的耦合关系,提出了一种基于坡度特征的花岗岩风化程度划分方法。该方法首先利用卫星遥感数据解译区域地层岩性,通过立体像提取区域坡度信息; 然后对坡度分级并统计花岗岩地质体内各级坡度的面积百分比; 最后根据坡度分级特征曲线判断花岗岩风化程度。野外验证表明,该方法可以准确划分花岗岩风化程度,可为工程设计和施工作业提供参考。  相似文献   

20.
徐则民  黄润秋 《中国地质》2013,40(6):1942-1948
提要:岩石化学风化程度评价指标应该同时满足以下三个基本条件,即与风化程度之间的关系简单明确、对风化程度变化具有足够的敏感性和易于确定和不易受到人为因素影响。作为铁镁质岩石的主要代表,(峨眉山)玄武岩风化程度评价除考虑可引起组分淋失与富集的水解反应外,还应充分考虑二价铁的氧化反应。新鲜峨眉山玄武岩中并存的二价铁和三价铁的含量总体稳定,910个样品的FeO、Fe2O3平均含量分别为8.45%和5.15%,以均匀、随机的方式赋存于辉石、橄榄石、杏仁体中的绿泥石、磁铁矿及火山玻璃中。风化玄武岩、玄武岩斜坡地下水及新鲜玄武岩浸泡液的地球化学研究结果表明,FeO及Fe2O3含量对峨眉山玄武岩风化程度的敏感性明显高于其他组分,同时铁又是玄武岩风化过程中活动性最差的元素之一。三价铁和二价铁的摩尔数比值(FF)适合于峨眉山玄武岩整个风化过程的风化程度判别,比既有风化指数具有更高的分辨率,尤其是对风化初期玄武岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号