首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhifang Xu  Guilin Han   《Applied Geochemistry》2009,24(9):1803-1816
The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 104 mol a−1.  相似文献   

2.
中国东部地带表土稀土元素的地球化学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
对中国东部从黑龙江省到海南省的纵向大断面50个表土样品的稀土元素(REE)含量进行了测定,结果显示其平均含量高于中国土壤和世界土壤的平均值;其稀土元素组成特点表现为轻稀土(LREE)富集,重稀土(HREE)亏损,Eu的负异常和Ce的正异常;未发现稀土元素总量∑REE和轻重稀土比值∑LREE/∑HREE随纬度或年均温度、年降水量有明显的地带性规律变化;δCe值的分布特征显示在气候达到南亚热带-北热带地区的湿热程度及风化强度时,表土才会出现显著的Ce正异常;在Ce/Eu对Eu/Sm图解上不同母岩类型的表土参数差异明显,尤其是玄武岩发育的表土与中酸性岩石和沉积岩发育的表土之间具有明显差异。本研究表明,中国东部表土的稀土元素分布特征没有明确的气候带示踪意义,而主要具有成土母质类型示踪意义;δCe值的显著正异常可以示踪南亚热带-热带气候;由于影响因素复杂,各种特征参数的细微变化对沉积物成因、物源区以及区域气候的指示意义尚待积累更多的数据并参考其他环境指标才能做出正确判断。  相似文献   

3.
Located in the Luonan county, Shaanxi Province, northwest China, Jinduicheng, Shijiawan and Huanglongpu molybdenum deposits constitute the most important molybdenum mineralized district in China. Among these three deposits, the Jinduicheng and Shijiawan molybdenum deposits are connected spatially and genetically with granitoid porphyry (124 ± 6 Ma, K-Ar biotite), and consist of disseminated-veinlet ores. Geochemical studies of rare earth elements (REE) furnish further evidence for understanding the rock- and ore-forming processes of these two porphyry molybdenum deposits and their related granitoid rocks. The REE distribution in molybdenum ore, granitoids and their Middle Proterozoic meta-volcanic wall rocks is discussed. The similarities between the REE signatures of the Shijiawan molybdenum-bearing monzogranite porphyry and the neighbouring Laoneushan monzogranite (130 ± 5 Ma, K-Ar biotite) show that they were produced at the same evolutional stage of granitoid magma derived mainly from crustal anatexis. The Shijiawan biotite monzogranite porphyry may be an apophysis of the Laoneushan granitoid batholith. Compared to the Shijiawan monzogranite porphyry, the Jinduicheng molybdenum-bearing granite porphyry is characterized by a high content of HREE, and depletion in LREE. The unique REE patterns indicates that the molybdenum-bearing granite porphyry was formed by thermogravitation diffusion of a granitoid magma. The slight depletion of REE abundance in the altered granitoid porphyry and meta-volcanic wall rocks shows that leaching of REE occurred during breakdown of the primary mineral assemblage, and crystallization of secondary minerals. The high REE content of molybdenum ore represented re-deposition of the mobilized molybdenum and REE.  相似文献   

4.
Determination of rare earth element (REE) abundances in rocks of the Fen complex has shown that within rocks of the first magmatic series REE abundances increase in the order urtiteFen magmas are discussed and it is considered that parental magmas had relatively high La/Yb ratios (40–60). Utilizing petrological evidence from other alkaline complexes coupled with experimental studies it is considered that the parental magma was a carbonated nephelinite produced by limited (<10%) partial melting of the mantle. All the Fen rocks are placed in a petrogentic scheme in which a carbonated nephelinite magma undergoes liquid immiscibility, differentiation and volatile transport.  相似文献   

5.
湖南康家湾铅锌矿床是水口山铅锌矿田的重要组成部分,是一个发现较晚、埋深较深的隐伏矿床。作者对该矿2种不同产状的方解石进行了稀土元素和碳-氧同位素研究。研究表明,该矿与黄铁矿、铅锌矿共生的团块状方解石的稀土元素含量较低(4.11×10~(-6)~38.09×10~(-6)),并表现出LREE富集型的配分模式。胶结方铅矿和闪锌矿的脉状方解石,其稀土元素含量更低(1.52×10~(-6)~5.57×10~(-6)),大体表现出MREE富集型的配分模式,轻稀土略微亏损。2类方解石野外产状不同,稀土元素含量差别明显,REE配分模式也不同,暗示其成矿流体性质不同,流体来源也可能不同。这2类方解石的C、O同位素组成亦存在明显差别,脉状方解石的δ~(13)C低于块状方解石,但其δ~(18)O明显大于后者。理论模拟结果表明,该矿方解石的形成是流体沸腾CO_2去气和温度降低造成的,此外大气降水的加入也起到一定的作用。团块状方解石成矿流体的可溶性碳以HCO-3为主,其δ~(13)C、δ~(18)O值分别为-4‰和5‰,是混入了45%左右大气降水的岩浆热液。脉状方解石的成矿流体是来源不同的岩浆热液且混入约10%的大气降水,其可溶性碳以H_2CO_3为主,δ~(13)C、δ~(18)O值分别为-6‰和5‰。  相似文献   

6.
Rare earth elements in the sedimentary cycle: A summary   总被引:2,自引:0,他引:2  
The relative and absolute concentrations of rare earth elements (REE) in authigenic and biogenic phases of deep-sea sediments are quite different. Competition between these phases for REE has resulted in fractionation from the parent material, the latter consisting predominantly of terrigenous material, but with a contribution from marine volcanism. The strongest feature of this fractionation is a depletion of Ce, relative to La, in CaCO3, opalline silica, phillipsite, phosphorite, barite, and montmorillonitic clays; and a Ce enrichment in Fe/Mn nodules. The distribution of REE in different masses of seawater strongly reflects their fractionation in sediments. Whereas the relative concentration of REE in rivers resembles that of shale, their removal from seawater by authigenic and biogenic phases results in: (1) a decrease of their total concentration; (2) a depletion of Ce; and (3) an enrichment of heavy REE relative to light REE. The order of fractionation for water masses in the Atlantic Ocean is:Antarctic intermediate water > North Atlantic deep water > Antarctic bottom water> shelf water > river water ~ shale.The shale-normalized pattern for the sum of REE in the authigenic and biogenic phases of pelagic sediment and in seawater resembles that of an admixture of shale and basalt corresponding presumably to the realtive inputs from continents and marine volcanism respectively. The estimated rate of accumulation of each REE in the sediment, however, is approximately 12 times the estimated rate of input of REE from these two sources.  相似文献   

7.
Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively undepleted mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.  相似文献   

8.
There is a correlation between thorium and the light rare earth elements, indicated by La/Th ratios in fine grained sedimentary rocks of various ages from Australia and Greenland. The correlation between Th and the heavy rare earth elements (Th/Yb) is much less significant. Archean sedimentary rocks have a higher La/Th (3.6 ± 0.4) than post-Archean sedimentary rocks (La/Th = 2.7 ± 0.2).The cause of this correlation can be attributed to the coherent behaviour of these elements during most sedimentary processes (weathering, transport, diagenesis, etc.). Since the chondrite-normalized rare earth element distribution of clastic fine grained sedimentary rocks is accepted to be parallel to the distribution of REE in the upper continental crust, an estimate of upper crustal Th abundances can be made. Using reasonable assumptions of certain elemental ratios (K/U, Th/U, K/Rb) in the upper crust, minimum estimates of the abundances of K, U and Rb can also be made for the post-Archean and Archean upper crusts.The post-Archean values (K = 2.9%; Rb = 115 ppm; Th = 11.1 ppm; U = 2.9 ppm) compare favourably to some previous estimates made from direct sampling and theoretical considerations and help confirm a granodiorite present day upper continental crust. The Archean data (K = 0.92%; Rb = 30ppm; Th = 3.5 ppm; U = 0.92 ppm) support models which suggest a significantly more mafic exposed crust at that time.  相似文献   

9.
Acta Geochimica - Siliciclastic sedimentary rocks, including sandstones and associated shales, from the Permo-Carboniferous Kanawar Group of NW Tethys Himalaya, Spiti Region, India were examined...  相似文献   

10.
Geochemical characteristics of scandium are described with respect to its source,evolution and correlation with REE as observed in Late Sinian and Early Cambrian phosphorites and tuffs in Guizhou.Gomparison of chondrite-nomalized REE patterns and some other parameters between the phosphorite and tuff shows that scandium and REE are most likely to have been derived from earlier or contemporaneous marine volcanics or tuffs,with no indication of genetic link to the purple shales,silstones and dolomites in the area.The conditions under which the Sc-bearin phosphorites were formed are discussed in the light of sulfur isotopes and Eh-Ph constrains.  相似文献   

11.
云南大平掌铜多金属矿床稀土元素地球化学特征   总被引:1,自引:0,他引:1  
滇西大平掌铜多金属矿床具典型的“双层结构”。对上部盆地相的块状硫化物和下部通道相的细脉浸染状硫化物的稀土元素分析表明,前者具正Eu异常的球粒陨石标准化配分模式,后者具负Eu异常的配分模式。这种变化与成矿流体演化有关。通过与大西洋中脊TAG热液活动区表层沉积硫化物和黑烟囱流体等的稀土元素配分模式对比,可以认为成矿是火山喷流沉积作用的结果。  相似文献   

12.
Organic matter (OM) associated with the Dongsheng sedimentary U ore hosting sandstone/siltstone was characterized by Rock-Eval, gas chromatography–mass spectrometry and stable C isotope analysis and compared to other OM in the sandstone/siltstone interbedded organic matter-rich strata. The OM in all of the analyzed samples is Type III with Ro less than 0.6%, indicating that the OM associated with these U ore deposits can be classified as a poor hydrocarbon source potential for oil and gas. n-Alkanes in the organic-rich strata are characterized by a higher relative abundance of high-molecular-weight (HMW) homologues and are dominated by C25, C27 or C29 with distinct odd-to-even C number predominances from C23 to C29. In contrast, in the sandstone/siltstone samples, the n-alkanes have a higher relative abundance of medium-molecular-weight homologues and are dominated by C22 with no or only slight odd-to-even C number predominances from C23 to C29. Methyl alkanoates in the sandstone/siltstone extracts range from C14 to C30, maximizing at C16, with a strong even C number predominance, but in the organic-rich layers the HMW homologues are higher, maximizing at C24, C26 or C28, also with an even predominance above C22. n-Alkanes in the sandstone/siltstone sequence are significantly depleted in 13C relative to n-alkanes in most of the organic-rich strata. Diasterenes, ββ-hopanes and hopenes are present in nearly all the organic-rich sediments but in the sandstone/siltstone samples they occur as the geologically mature isomers. All the results indicate that the OM in the Dongsheng U ore body is derived from different kinds of source materials. The organic compounds in the organic-rich strata are mainly terrestrial, whereas, in the sand/siltstones, they are derived mainly from aquatic biota. Similar distribution patterns and consistent δ13C variations between n-alkanes and methyl alkanoates in corresponding samples suggest they are derived from the same precursors. The OM in the organic-rich strata does not appear to have a direct role in the precipitation of the U ore in the sandstone, but an indirect role cannot be excluded. The OM in the U hosting sandstone shows a relatively low hydrogen index, presumably due to oxidation or radiolytic damage.  相似文献   

13.
Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd144Nd ratios in the nodules (~0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.  相似文献   

14.
The Thetford Mines complex is a complete ophiolite which is part of an ultramafic-mafic belt within Québec Appalachians. These allochtonous bodies were emplaced during the Early Ordovician. The Thetford Mines complex comprises a lower unit of metamorphic harzburgite (in which tabular, dyke-like, dunitic bodies occur) overlain successively by ultramafic cumulates, mafic cumulates, ophitic gabbros, diabase sills and dykes, and basaltic volcanic rocks. Field evidence, petrography and chemical data indicate that the tabular dunitic bodies formed when fractures in the metamorphic harzburgite (which constituted the floor of the magma chamber) filled with early cumulates (i.e., olivine±chromite). Representative rocks from all units were analyzed for major and rare earth elements (REE). Metamorphic harzburgite samples from Thetford Mines complex have U-shaped chondrite-normalized REE patterns. Pyroxenites and wehrlites of the cumulate sequence are all strongly light-REE depleted and have heavy REE ranging from 0.4 to 1.5 times chondrite. REE data from ultramafic and volcanic rocks of Thetford Mines complex and geochemical modelling indicate that the metamorphic harzburgite has the chemical characteristics of depleted upper mantle residues with U-shaped patterns, and that the ultramafic cumulates crystallized from magmas having different La/Yb ratios.  相似文献   

15.
The Woxi W–Sb–Au deposit in Hunan, South China, is hosted by Proterozoic metasedimentary rocks, a turbiditic sequence of slightly metamorphosed (greenschist facies), gray-green and purplish red graywacke, siltstone, sandy slate, and slate. The mineralization occurs predominantly (> 70%) as stratabound/stratiform ore layers and subordinately as stringer stockworks. The former consists of rhythmically interbedded, banded to finely laminated stibnite, scheelite, quartz, pyrite and silty clays, whereas the latter occurs immediately beneath the stratabound ore layers and is characterized by numerous quartz + pyrite + gold + scheelite stringer veins or veinlets that are typically either subparallel or subvertical to the overlying stratabound ore layers. The deposit has been the subject of continued debate in regard to its genesis. Rare earth element geochemistry is used here to support a sedimentary exhalative (sedex) origin for the Woxi deposit. The REE signatures of the metasedimentary rocks and associated ores from the Woxi W–Sb–Au deposit remained unchanged during post-depositional processes and were mainly controlled by their provenance. The original ore-forming hydrothermal fluids, as demonstrated by fluid inclusions in quartz from the banded ores, are characterized by variable total REE concentrations (3.5 to 136 ppm), marked LREE enrichment (LaN/YbN = 28–248, ∑LREE/∑HREE = 16 to 34) and no significant Eu-anomalies (Eu/Eu = 0.83 to 1.18). They were most probably derived from evolved seawater that circulated in the clastic sediment pile and subsequently erupted on the seafloor. The bulk banded ores are enriched in HREE (LaN/YbN = 4.6–11.4, ∑LREE/∑HREE = 3 to 14) and slightly depleted in Eu (Eu/Eu = 0.63 to 1.14) relative to their parent fluids. This is interpreted as indicating the influence of seawater rather than a crystallographic control on REE content of the ores. Within a single ore layer, the degree of HREE enrichment tends to increase upward while the total REE concentrations decrease, reflecting greater influence and dilution of seawater. There is a broad similarity in chondrite-normalized REE patterns and the amount of REE fractionation of the banded ores in this study and exhalites from other sedex-type polymetallic ore deposits, suggesting a similar genesis for these deposits. This conclusion is in agreement with geologic evidence supporting a syngenetic (sedex) model for the Woxi deposit.  相似文献   

16.
Archean sedimentary rocks of very limited lateral extent from horizons within basaltic and ultramafic volcanic sequences at Kambalda, Western Australia, are extremely variable in major elements, LIL and ferromagnesian trace element compositions. The REE patterns are uniform and do not have negative Eu anomalies. Two samples have very low total REE abundances and positive Eu anomalies attributed to a very much greater proportion of chemically deposited siliceous material. Apart from these two samples, the Kambalda data are similar to REE abundances and patterns from Archean sedimentary rocks from Kalgoorlie, Western Australia and to average Archean sedimentary rock REE patterns. These show a fundamental distinction from post-Archean sedimentary rock REE patterns which have higher LaYb ratios and a distinct negative Eu anomaly.  相似文献   

17.
北京平原沉积物稀土元素地球化学特征及物源意义   总被引:2,自引:0,他引:2  
文中总结了北京平原永定河、潮白河流域钻孔沉积物中稀土元素分布特征,两流域沉积物稀土元素总量∑REE、轻重稀土比(LREE/HREE)及轻(La/Sm)N、重(Gd/Yb)N稀土分馏特征差异较为显著。粒度对沉积物稀土分布(总量、轻重稀土比及分馏特征)有一定影响;各流域沉积物均表现为轻稀土相对富集、弱Eu负异常的球粒陨石标准化曲线。细颗粒沉积物稀土分馏特征(La/Yb)N有较好的物源示踪意义。根据沉积物(La/Yb)N值对永定河、潮白河交互沉积区不同深度沉积物进行了物源示踪,不同深度上沉积物来源不同。此外,同一流域上、中、下游沉积物稀土分馏特征不同。常量元素Al2O3/Fe2O3与稀土元素(La/Yb)N划分结果相符,但精度低于稀土元素物源分析。  相似文献   

18.
A variety of alkaline lavas from the Dunedin Volcano have been analyzed for the rare earth elements (REE) La-Yb. The compositions analyzed were: basalt-hawaiite-mugearite-benmoreite; basanite, nepheline hawaiite, nepheline trachyandesite and nepheline benmoreite; trachyte; phonolite. The series from basalt to mugearite shows continuous enrichment in the REE, consistent with a crystal fractionation model involving removal of olivine and clinopyroxene. From mugearite to benmoreite there is a depletion in the REE which is explained by the appearance of apatite as a liquidus phase. The chondrite normalized REE patterns for the phonolites are characterized by strong enrichment and fractionation coupled with a sharp depletion in Eu. Removal of plagioclase from benmoreite magma is suggested for the derivation of the phonolites. The series basanite-nepheline hawaiite, and basanite-nepheline hawaiite-nepheline benmoreite appear to be high pH2O analogues of the series basalt-ben-moreite, with enrichment of the REE being achieved by removal of clinopyroxene, kaersutite and olivine. Compared with other lavas the trachyte has low REE abundances and is characterized by a striking positive Eu anomaly.  相似文献   

19.
20.
The Betts Cove ophiolite includes the components of typical ocean crust: pillow lavas, sheeted dikes, gabbros and ultramafics. However, the trace element geochemistry of basaltic rocks is unusual. Three geochemical units are recognized within the lava and dike members. Within the pillow lavas, the geochemical units correspond to stratigraphic units. Upper lavas have ‘normal’ (i.e., typical for ocean floor basalts) TiO2 contents (0.75 to 2.0 wt%), heavy rare earth elements (HREE) values in the range 6–20× chondrites and chondrite-normalized REE patterns with relative LREE depletion. Intermediate lavas have TiO2 contents between 0.30 and 0.50 wt%, HREE contents from 4–7× chondrites and extreme relative LREE depletion. Lower lavas have anomalously low TiO2 contents (<0.30 wt%) and unusual convex-downwards REE patterns with REE abundances around 2–5 × chondrite. These geochemical differences can be explained if the three groups were derived from different mantle sources. Independent mantle sources for the three units are consistent with their different 143Nd144Nd ratios varying at 480 m.y.B.P. from 0.51222 in a lower lava to 0.51238 in an upper lava. The upper lavas may be partial melts of a source similar in composition to that of modern MORB, the intermediate lavas may be from a very depleted oceanic mantle (second stage melt), and the lower lavas may have formed by melting an extremely depleted mantle that had been invaded by a LREE-enriched fluid. A possible tectonic environment where these different sources could be juxtaposed is a back-arc or inter-arc basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号