首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High levels of fluoride concentration were observed in deep groundwater of the Mizunami area in Central Japan. Fluoride occurs mainly due to the reaction between granitic basement rock and groundwater. Granites were collected, crushed to powder, and then allowed to react with purified water for 80 days. Water–rock interaction results showed that the major factor affecting fluoride concentration is the residence time of the groundwater. Coexisting ions have also some contribution toward fluoride concentration. The groundwater residence time in the Mizunami area was estimated by applying results of water–rock interaction to correspond with field data. A regression model relating fluoride concentration, residence time, and coexisting ions was developed. The parameters of the regression model were determined using the genetic algorithms technique. Residence time was estimated by extrapolating experimental data to correspond with filed data. Near the recharge area, residence times in the potential fluoride source rock varied between 1 and 2,000 years, whereas near the discharge area residence times were in excess of tens of thousands of years. The groundwater residence time was also estimated by the groundwater particle-tracking-flow model. The estimates of groundwater residence time based on geochemical regression model were often larger than estimates of groundwater residence time developed by particle-tracking analysis using a groundwater flow model. There were large uncertainties—on the order of 10–10,000 years—in the estimates based on geochemical data.  相似文献   

2.
 The supraregional GIS-supported stochastical model, WEKU, for the determination of groundwater residence times in the upper aquifers of large groundwater provinces is presented. Using a two-dimensional analytical model of groundwater flow, groundwater residence times are determined within two extreme cases. In the first case, maximal groundwater residence times are calculated, representing the part of groundwater, that is drained by the main surface water of a groundwater catchment area. In the second case, minimal groundwater residence times for drainage into the nearest surface water are determined. Using explicit distribution functions of the input parameters, mean values as well as potential ranges of variations of the groundwater residence times are derived. The WEKU model has been used for the determination of groundwater residence times throughout Germany. The model results – mean values and deviations of the groundwater velocity and the maximal and minimal groundwater residence times in the upper aquifers – are presented by general maps and discussed in detail. It is shown that the groundwater residence times in the upper aquifer vary regionally, differentiated between less than 1 year and more than 2000 years. Using this information, the time scales can be specified, until measures to remediate polluted groundwater resources may lead to a substantial groundwater quality improvement in the different groundwater provinces of Germany. With respect to its supraregional scale of application, the WEKU model may serve as a useful tool for the supraregional groundwater management on a state, federal or international level. Received: 15 August 1995 · Accepted: 15 October 1995  相似文献   

3.
The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of –2.4?‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ~2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water–rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 . The intensity of water–rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.  相似文献   

4.
An area covering assessment of the groundwater residence times for the upper pore aquifers in the River Elbe Basin was performed. Residence times were determined by combining groundwater velocities and flow distances along each flow-path to the surface waters using a two-dimensional model approach. Groundwater velocity was calculated as a function of hydraulic conductivity, hydraulic gradient and effective yield of pore space. Flow paths were obtained by an analysis of the morphology of the groundwater table. The mean groundwater residence time in the pore aquifers of the River Elbe Basin was quantified to about 25 years. A strong temporal blurring in the different regions between less than one year and more than 250 years was obtained. For the regional groundwater management in the Elbe Basin the groundwater residence times are an important parameter, which helps to take into account the temporal dimension in the assessment of the impact of political measures aiming at the improvement of groundwater quality with regard to diffuse pollutants (e.g. nitrate).  相似文献   

5.
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.  相似文献   

6.
The assessment of groundwater quality in shallow aquifers is of high societal relevance given that large populations depend directly on these water resources. The purpose of this study was to establish links between groundwater quality, groundwater residence times, and regional geology in the St. Lawrence Lowlands fractured bedrock aquifer. The study focuses on a 4500 km2 watershed located in the St. Lawrence Lowlands of the province of Quebec in eastern Canada. A total of 150 wells were sampled for major, minor, and trace ions. Tritium (3H) and its daughter element, 3He, as well as radiocarbon activity (A14C) were measured in a subset of wells to estimate groundwater residence times. Results show that groundwater evolves from a Ca–HCO3 water type in recharge zones (i.e., the Appalachian piedmont) to a Na–HCO3 water type downgradient, toward the St. Lawrence River. Locally, barium (Ba), fluoride (F), iron (Fe), and manganese (Mn) concentrations reach 90, 2, 18, and 5.9 mg/L respectively, all exceeding their respective Canadian drinking water limits of 1, 1.5, 0.3, and 0.05 mg/L. Release of these elements into groundwater is mainly controlled by the groundwater redox state and pH conditions, as well as by the geology and the duration of rock–water interactions. This evolution is accompanied by increasing 3H/3He ages, from 4.78 ± 0.44 years upgradient to more than 60 years downgradient. Discrepancies between calculated 3H/3He and 14C water ages (the latter ranging from 280 ± 56 to 17,050 ± 3410 years) suggest mixing between modern water and paleo-groundwater infiltrated through subglacial recharge when the Laurentide Ice Sheet covered the study area, and during the following deglaciation period. A linear relationship between 3H activity and corrected 14C versus Mg/Ca and Ba support a direct link between water residence time and the chemical evolution of these waters. The Ba, F, Fe, and Mn concentrations in groundwater originate from Paleozoic rocks from both the St. Lawrence Platform and the Appalachian Mountains. These elements have been brought to the surface by rising hydrothermal fluids along regional faults, and trapped in sediment during their deposition and diagenesis due to reactions with highly sulfurous and organic matter-rich water. Large-scale flow of meltwater during subglacial recharge and during the subsequent retreat of the Laurentide Ice Sheet might have contributed to the leaching of these deposits and their enrichment in the present aquifers. This study brings a new and original understanding of the St. Lawrence Lowlands groundwater system within the context of its geological evolution.  相似文献   

7.
The recharge sources and groundwater age in the Songnen Plain, Northeast China, were confirmed using environmental isotopes. The isotopic signatures of the unconfined aquifers in the southeast elevated plain and the north and west piedmont, cluster along local meteoric water lines (LMWLs) with a slope of about 5. The signature of source water was obtained by the intersection of these LMWLs with the regional meteoric water line (RMWL). This finding provides evidence that the recharge water for these areas originate from the Changbai Mountains and the Low and High Hingan Mountains, respectively. Groundwater in the unconfined aquifer in the low plain yields a LMWL with a slope of 4.4; its nitrate concentration indicates the admixture of irrigation return flow. The δ-values of the unconfined aquifer in the east elevated plain plot along the RMWL, reflecting recharge by local precipitation. The mean residence time of groundwater in these aquifers is less than 50?years. However, the 14C age of the groundwater in the confined Quaternary aquifer ranges from modern to 19,500?years, and in the Tertiary confined aquifer from 3,100 to 24,900?years. Modern groundwater is mainly recharged to the Quaternary confined aquifer on the piedmont by local precipitation and lateral subsurface flow.  相似文献   

8.
Since July 2002, tertiary treated wastewater has been artificially recharged through two infiltration ponds in the dunes of the Belgian western coastal plain. This has formed a lens of artificially recharged water in the dunes’ fresh water lens. Recharged water is recovered by extraction wells located around the ponds. Hydraulic aspects of the artificial recharge and extraction are described using field observations such as geophysical borehole loggings and a tracer test. Borehole logs indicate recharged water up to 20 m below surface, whereas the tracer test gives field data about the residence times of the recharged water. Furthermore, a detailed solute transport model was made of the area surrounding the ponds. Groundwater flow, capture zone, residence times and volume of recharged water in the aquifer are calculated. This shows that the residence time varies between 30 days and 5 years due to the complex flow pattern. The extracted water is a mix of waters with different residence times and natural groundwater, assuring a relatively stable water quality of the extracted water.  相似文献   

9.
 A karst-fissured aquifer in the Upper Jurassic carbonate rocks of the Krakow Upland shows a very high yield (safe yield 117 000 m3/day) and belongs to the major groundwater basins (MGBs) of Poland. The uncovered character of the aquifer and its hydraulic structure favor the intensive infiltration and migration of anthropogenic pollutants from the surface. This pollution is caused by agriculture and industry in the proximity of Krakow and the Upper Silesian agglomeration. Progressive degradation of groundwater quality on a regional scale results. Evaluation of the endangering of the aquifer studied is based on the analysis of the time interval of vertical water percolation from the surface, the time interval of groundwater horizontal flow through the aquifer and the duration of water residence in the aquifer derived from tritium data. Quaternary and Cretaceous overburden occur in the Krakow Upland in addition to numerous outcrops of limestones. The time interval of vertical water percolation in highly permeable limestones does not exceed 3 years and in the areas covered by overburden it is from several to 50 years. The mean effective time interval of horizontal groundwater flow through the Upper Jurassic rocks along the flow paths ranges from several months in the areas of direct drainage to over 15 years in the elevated areas of local groundwater divides. The age of water in the rock matrix was determined using tritium data interpreted according to an exponential model and it ranges from 70 years to over 130 years. In karst-fissured systems with a high retardation index (Rp=21) the effective time of water circulation in local drainage basins does not exceed 7 years. The Krakow-Wieluń Upland is the most extensive and uniform karst region in Poland. It is a belt of Upper Jurassic limestone extending from Krakcow in the southeast to Wieluń in the northwest on the northeast slope of the Silesian Upland. Residual hills of Paleogene age separated by infilled karst depressions are the most characteristic features of the Krakow-Wieluń Upland. More than 800 small caves are known in this area, but only two of them reach 1 km of aggregate passage length (Gazek and others 1992). Received: 4 December 1996 · Accepted: 29 April 1997  相似文献   

10.
Despite the continuous increase in water supply from desalination plants in the Emirate of Abu Dhabi, groundwater remains the major source of fresh water satisfying domestic and agricultural demands. Groundwater has always been considered as a strategic water source towards groundwater security in the Emirate. Understanding the groundwater flow system, including identification of recharge and discharge areas, is a crucial step towards proper management of this precious source. One main tool to achieve such goal is a groundwater model development. As such, the main aim of this paper is to develop a regional groundwater flow model for the surficial aquifer in Abu Dhabi Emirate using MODFLOW. Up to our knowledge, this is the first regional numerical groundwater flow model for Abu Dhabi Emirate. After steady state and transient model calibration, several future scenarios of recharge and pumping are simulated. Results indicate that groundwater pumping remains several times higher than aquifer recharge from rainfall, which provides between 2 and 5% of total aquifer recharge. The largest contribution of recharge is due to subsurface inflow from the eastern Oman Mountains. While rainfall induced groundwater level fluctuation is absent in the western coastal region, it reaches a maximum of 0.5 m in the eastern part of the Emirate. In contrast, over the past decades, groundwater levels have declined annually by 0.5 m on average with local extremes spanning from 93 m of decline to 60 m of increase. Results also indicate that a further decrease in groundwater levels is expected in most of Emirate. At other few locations, upwelling of groundwater is expected due to a combination of reduced pumping and increased infiltration of water from nonconventional sources. Beyond results presented here, this regional groundwater model is expected to provide an effective tool to water resources managers in Abu Dhabi. It will help to accurately estimate sustainable extraction rates, assess groundwater availability, and identify pathways and velocity of groundwater flow as crucial information for identifying the best locations for artificial recharge.  相似文献   

11.
华北平原区域水资源特征与作物布局结构适应性研究   总被引:12,自引:1,他引:11  
据野外调查、遥感和综合研究表明, 近50年来华北平原粮食产量持续增加导致农业区地下水开采量不断增大, 同时灌溉节水水平的不断提高有效地缓解了农业开采量增加的速率。在1977年之前, 每增产10000t小麦和玉米, 多年平均实际开采量增加0.14?108 m3; 在1978年以来, 每增产10000t小麦和玉米, 多年平均实际开采量增加0.04?108 m3。以2001~2005年平均耗用地下水的开采强度(0.53 m3/kg)计算, 粮食增产促使地下水开采量平均每五年递增2.45×108 m3/a, 实际平均每五年少增加9.45×108 m3/a。降水量减小, 补给量变少, 开采量增大; 降水量增大, 补给量较多, 开采量减小。在连续枯(丰)水年份, 当年降水量减少(增加)10%时, 地下水系统水量减少7.98% (增加7.67%)。因此, 需要大力发展抗旱节水作物及高产节水技术, 合理调控农业种植结构, 对于缓解研究区地下水不断恶化态势具有实质性促进作用。  相似文献   

12.
Hydrochemical and isotopic researches were conducted in El-Sadat City groundwater system to identify groundwater alteration, recharge, residence time and extent of pollution. The groundwater salinity gradually increases as the groundwater moves from northeastern to southwestern parts of the city. Groundwater generally shows mineralization decreasing with depth, indicating that the possibility of recent water penetration far below the surface is limited. Shallow groundwater has an elevated level of nitrate, which is attributed to anthropogenic sources due to intensive agricultural activity. The limit of high nitrate water may mark the maximum penetration of groundwater from the surface, which is found in depths <100 m. The northeastern and southwestern industrial areas are highly contaminated by some heavy metals, which may originate from some local industrial effluents. The sewage oxidation ponds seem to show no effect on groundwater; hence, these ponds are not a point source for these heavy metals. Dissolved ions depict five different hydrochemical facies, and stable isotopes define the recharge mechanisms, the origin of groundwater and the hydraulic confinement of deep groundwater. The deep groundwater is untritiated and has long residence times (in the order of thousands of years). Three different hydrochemical groups have been recognized and mapped in El-Sadat City, based on the chemical and isotopic information of the groundwater. These groups have different levels of contamination. The deep groundwater samples are significantly less impacted by surface activities and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction. The extensive exploitation of groundwater for drinking water supply would shortly be reflected by a gradual decline of the groundwater table in El-Sadat City. Amelioration of groundwater quality requires further management strategies and efforts in the forthcoming years.  相似文献   

13.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

14.
利用水中氚值与地下水年龄分布特征和多年平均更新速率,分析安阳河中下游流域地下水更新能力。应用MGMTP重建研究区1953—2016年大气降水氚值,应用集中参数模型(LPMs)计算地下水年龄,采用Le Gal La Shalle等提出的方法估算潜水与泉水多年平均更新速率。研究结果表明:(1)潜水与泉水由近20多年来大气降水补给。潜水样点受局部水文地质条件控制,补给径流条件差异明显。(2)小南海泉平均滞留时间23 a,多年平均更新速率3.6%,水量呈不断衰减趋势。(3)安阳河冲洪积扇扇后缘为补给区,受地表水渗漏与大气降水入渗补给,更新能力较强。扇中部至京港澳高速路地带为现代地下水,年龄40~60 a。扇前缘为现代与次现代地下水的混合水,年龄大于60 a,更新能力较弱。(4)剥蚀岗丘与冲洪积平原深层承压水为较老地下水,更新能力极弱。因此,对小南海泉域的保护需要加强,并在短时期内能取得明显成效。受南水北调中线水源补给及限量地下水开采影响,安阳市区地下水降落漏斗大幅度缩减。  相似文献   

15.
Implemented on behalf of the Federal Ministry for Research and Technology (BMFT), a model is developed to trace the nutrient flow of nitrate in the soil and the groundwater on a supraregional scale. Research work is intended to indicate regionally differentiated hazardous potentials and thereby provide a basis for recommending comprehensive measures to protect groundwater in Germany. The adaption of the model to the hydrogeological and agricultural conditions of other states is possible in principle. This article focuses on the hydrogeological model parts. A high nitrate pollution of groundwater can be expected in all regions with intensive agricultural use of the topsoil. In particular, groundwater in solid rock areas is susceptible to nitrate pollution. There a rapid groundwater turnover and thus a short residence time for the groundwater in the aquifer is typical. Oxidizing aquifer conditions usually prevail in solid rock aquifers, preventing nitrate degradation. In many loose rock areas, in contrast, the groundwater has a low flow velocity and a long residence time in the aquifer. Because of a lack of free oxygen, a complete degradation of nitrate can occur, as long as iron sulfide compounds and/or organic carbon are available in the aquifer. A more detailed presentation of the whole research work is given in Wendland et al. (1993).  相似文献   

16.
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br?:Cl? ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca–HCO3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20–30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.  相似文献   

17.
地下水年龄结构是了解一个地区地下水资源开采可持续性的重要基础。穆兴平原地下水开采量增加以及地下水环境恶化,对该地区可持续发展有一定制约,为此在2016年采集CFCs样品31组和3H样品60组,估算了研究区地下水年龄。结果表明,穆兴平原北部地下水年龄为21年到大于65年,由西北部和穆棱河向平原中部及乌苏里江逐渐变老,更新性变差,主要受到大气降水和地表河水补给,但是由于地表覆盖一层黏性土,地下水中缺失小于10年的水;不同井深样品中二者及NO_3~-浓度的变化,表明在60 m以上地下水的防污性能较差,而在100 m以下则较好,饮用水源井深需超过100 m。  相似文献   

18.
深层地下水是鲁西北平原区特有的含水系统,具有分布范围广、埋藏深和开采恢复能力差等水文地质特征。近30年来的人工开采使天然流场发生了较大改变,形成多个规模不一、形态各异的超采漏斗。利用多年来区域研究成果和实测资料,在研究区域地下水循环系统的基础上,分析开采初期和开采条件下特征年份深层地下水动力场特征,研究鲁西北平原深层地下水演化程度。研究发现,近30年来,区域水头整体下降,地下水动力场发生了显著变化。除黄河三角洲全咸水区、莘县阳谷、嘉祥凸起周围降幅较小外,其余地区均大于20m,其中德州一武城、滨州-博兴、菏泽城区降幅均在60m以上,德州、滨州漏斗中心降幅大于100m。目前已造成德州、滨州、东营、菏泽、济宁等城区不同程度的地面沉降。  相似文献   

19.
Labat  C.  Larroque  F.  de Grissac  B.  Dupuy  A.  Saltel  M.  Bourbon  P. 《Hydrogeology Journal》2021,29(5):1711-1732

Geological deformations like anticlines have a prominent role in aquifer system functioning. Structural deformations control erosion patterns, areas of nondeposition, lateral facies variations and thickness variations. The nature and geometry of geological bodies have a major impact on the aquifers and interconnections between them. To characterize these features and to quantify their influence on overall hydrogeological functioning, a multidisciplinary approach is proposed at a local scale. In southwestern France, the Aquitaine Basin contains a regional multilayered aquifer system affected by numerous anticlines. The Villagrains-Landiras anticline is a major anticline of the Aquitaine Basin, and near its axis is the subcropping Cenomanian aquifer; thus, the Cenomanian aquifer has potential for drinking water supply. An extensive research program was developed, including reconnaissance drilling, water level measurements, geochemical analyses, and petrophysical tests, and the results were combined with existing data. This integrated work precisely defined the complex architecture of the aquifer and confining units linked with the uplift and the polyphase erosion of the anticline. It resulted in the characterisation of the deposits’ geometries, lithology, and aquifer properties. The areas of aquifer interconnection have been defined and recharge flows have been estimated. A new groundwater circulation pattern constrained by isotopic water residence times was developed. A new geological model was built, which enables a rethink of the local functioning of the aquifer targeted for drinkable-water supply, but also it allows an understanding of the importance of anticline structure on the recharge conditions of the aquifers of this regional multilayered aquifer system.

  相似文献   

20.
The aquifer of the semi-arid Kairouan plain has been exploited for decades to supply the growing irrigated agriculture and the need of drinking water. In parallel, the major hydraulic works drastically changed the natural groundwater recharge processes. The continuous groundwater level drop observed since the 1970s naturally raises the question of groundwater storage sustainability. To date, hydrogeological studies focused on groundwater fluxes, but the total amount of groundwater stored in the aquifer system has never been fully estimated. This is the purpose of the present paper. A complete database of all available geological, hydrogeological and geophysical data was created to build a 3D lithology model. Then, the lithological units were combined with the hydraulic properties to estimate the groundwater storage. Over the 700 km2 of the modelled area, the estimated storage in 2013 was around 18?×?109 m3 (equivalent to 80 times the annual consumption of 2010) with a highly variable spatial distribution. In 45 years (1968–2013), 12% of the amount of groundwater stored in the aquifer has been depleted. According to these results, individual farms will face strong regional disparities for their access to groundwater in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号