首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

2.
The BCR sequential extraction procedure is applied to probe into the speciation distribution of heavy metals (Cd, Cr, Zn, Cu and Pb) in lake sediments of Core XJ2 in Xijiu Lake, Taihu Lake catchment, China. The results showed that the effective species concentration of this five heavy metal elements increased obviously during the past century, the proportions of organic/sulphide fractions of Zn, Cu and Pb decreased while the Fe–Mn oxide fractions increased, and the proportion of Fe–Mn oxide fractions of Cd decreased while the exchangeable and carbonate fractions increased. The concentrations of exchangeable and carbonate fractions of these five elements were increased in the past century, especially the proportions of these fractions of Cd, Zn, Cu and Pb increased prominently. These changes could be attributed to the anthropogenic pollution. Since the changes of the heavy metal concentrations were corresponding to the history of human activities, especially the industry development, within the catchment.  相似文献   

3.
This research presents a detailed study which was performed to infer the quantity of metal (Cd, Cr, Pb, Zn, Cu and Fe) contents in sediments of Daye Lake, Central China. The geo-accumulation (I geo) and potential ecological risk (PER) of these metals were assessed. The results reveal that: (1) the mean value of I geo ranked an order of Fe (class 6) > Cd (class 5) > Pb (class 3) > Zn (class 2) > Cr (Class 1) > Cu (Class 0); (2) Potential ecological risk (PER) values calculated for all these metals at different sampled points in Daye Lake exceeded the value of very high risk. Multivariate statistical analyses were carried out to determine the relationship between these six metals and to identify the possible pollution sources, with the results suggesting that the metal content in the sediments has three patterns: the first pattern includes Pb, Cd and Cr which were mainly present due to discharged water by smelting industries; second pattern contains Zn and Cu which mainly originated from the waste residue of the copper mining industry; the third pattern is Fe which is mainly related to mine tailing leaches. This study indicates very high metal content levels in the sediments, which may have adverse risks (average PER = 7,771.62) for the lake’s ecosystem and human beings associated with Daye Lake.  相似文献   

4.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

5.
This article presents the results of a geochemical investigation of sediments from Lake Druzno (northern Poland), a reservoir fed by freshwater from the catchment, with periodic input of brackish water from Vistula Lagoon. This study analyzed the spatial variation in heavy metal content in surface sediments as well as the temporal changes in metal content in two sediment cores dated using the 210Pb method. In the surface sediments, the highest metal concentrations were recorded in the northern part of the lake, with lower concentrations in the central and southern parts. Absolute values of metal concentrations in the cores were low, but normalization with respect to Al showed an increase during the second half of the 20th century. Mean enrichment factors (EF) in sediments from the second half of the 20th century ranged from insignificant (1–1.2) for Fe to (1.55–3.3) for Cu, Cd, Pb and Zn. The sediments deposited before 1950 had lower EF values (>1.5) and had low variability. Results from both the surface sediments and the cores indicate that the main source of lake pollution is brackish water intrusion from the Vistula Lagoon via the contaminated River Elbląg.  相似文献   

6.
Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.  相似文献   

7.
A total of 29 surface sediments were collected from the Daihai Lake, China. Concentrations of metals (Cu, Pb, Zn, and Cd) were determined using HR-ICP-MS after digestion with the mixture of HNO3–HF–HCl (aqua regia), and chemically fractionated according to the modified the European Community Bureau of Reference sequential extraction procedure. Total organic carbon contents and grain size were also analyzed. Average concentrations (ppm) for Cu (39.4 ± 10.6), Pb (29.9 ± 6.1), Zn (102.6 ± 23.3), and Cd (0.21 ± 0.07) were found in the sediments. The concentrations of metals are relatively higher in the central area of lake, while lower nearby the area with a shallower water depth. Sequential extraction results show that Cu and Zn are mainly distributed in the residual fraction, while Cd is dominantly in the non-residual fraction. Enrichment factor values and geoaccumulation indexes suggest that there are not obvious enrichments of Cu, Pb, and Zn in the sediments, but Cd pollution can be found in most of the area of Daihai Lake. The sources for Cu, Pb, and Zn are attributed to atmospheric deposition, which might be mainly associated with coal combustion. Agricultural runoff in polluted soils and coal combustion might be main sources of the Cd pollution in the lake.  相似文献   

8.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

9.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

10.
Trace metals were analyzed in water and sediment samples from Barapukuria coal mine area of Bangladesh in order to evaluate their mobility and possible environment consequences. Cadmium is the most mobile element with an average partition coefficient (log K d ) of 2.95 L/kg, while V is the least mobile element with a mean log K d of 5.50 L/kg, and their order of increasing mobility is: V < As < Pb < Fe < Cr < Se < Mn < Ni < Zn < Cu < Ba < Sr < Cd. Contents of organic carbon in sediment samples shows strong positive correlations with most trace metals as revealed by the multivariate geostatistical analysis. The overall variation in concentration is mainly attributed to the discharge of effluents originating from the coal mining activities around the study area. Compared to their background, Ni and Cu are the most enriched while significant enrichment of As, Mn, Ba, Sr, Cr, and Pb is also observed in the sediments. Geoaccumulation indices (I geo ) suggest sediments are moderately to heavily polluted with respect to Ni and Cu. The metal pollution index (MPI) varied from 91.91 to 212.01 and the highest value is found at site CM03 that is close to discharge point. The sediment quality guideline index (SQG-I Intervention ) values (0.56–1.52) suggest that the sediments at the study area have moderate to high ecotoxicological risk.  相似文献   

11.
Mn, Sr, Ba, Rb, Cu, Zn, Pb and Cd concentrations have been measured seasonally in the water and deposited sediments of the system comprising: Zala river (main input) — Lakes Kis-Balaton 1 and 2 (small artificial lakes created in a former bay of Lake Balaton) — Keszthely bay (hypertrophic part of Lake Balaton). The concentrations of the trace elements together with pH, alkalinity, dissolved cations (Ca2+, Mg2+, Na+, and K+), dissolved inorganic ligands (Cl, SO4 2–), particulate Al, Ca, inorganic and organic carbon are used to assess the contamination of the study area and biogeochemical processes controlling trace element concentrations. Thermodynamic speciation calculations have also been utilized to enhance our understanding of the system. In the sediments Rb, Ba, Cu and Zn concentrations were mainly controlled by the abundance of the aluminosilicate fraction. Strontium was mainly associated with the calcium carbonate fraction. The aluminosilicate fraction constitutes a major sink for Mn and Cd but the concentration of these elements are also strongly related to calcite precipitation. The main processes that control the dissolved distribution of trace elements in the Balaton system were: solid phase formation (carbonate) for Mn; coprecipitation with calcite for Sr, Ba, Rb and possibly Mn and Cd; adsorption/desorption processes (pH dependent) for Zn and Pb; solubilization of Mn and precipitation of Cd and Cu in reed covered wetland areas where anoxic conditions were probably existing during the warm season. A preliminary budget of atmospheric and river input to Lake Balaton has also been outlined. Although Lake Balaton, is subjected to anthropogenic inputs mainly from agricultural and domestic activities, their impact on trace element concentrations in the Balaton system is very limited due to the efficiency of removal processes (i.e. adsorption and co-precipitation) and to high sedimentation rates and strong sediment re-suspension. Anthropogenic inputs are only detected for Pb.  相似文献   

12.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

13.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

14.
湖南洞庭湖水系As和Cd等重金属元素分布特征及输送通量   总被引:9,自引:1,他引:8  
土壤地球化学调查显示,长江沿岸,尤其湖南洞庭湖流域存在以镉为主的重金属高值带。为进一步确定As和Cd等重金属元素在河流中的存在形式、迁移方式和通量等地球化学特征,本研究在洞庭湖水系主要干支流的关键位置布置采样点,分夏季丰水期和冬季枯水期两次,采集了原水、0.45μm过滤水和0.20μm过滤水等水样品,以及悬浮物固体样品,分析了水和悬浮物样品中As和Cd、Pb等重金属元素含量。结果发现,As元素在湘江、资水、湘江上游支流西河和耒水中含量最高,耒水、西河及湘江的Pb、Zn含量相对偏高,Cd在湘江、耒水及汨罗江的含量也明显高于其他河流;研究区河水中As、Ni、Cd和Zn等元素在水中离子态比例较大,其溶解态含量受河水pH和温度的控制,湘江、西河、耒水和汨罗江中悬浮物As、Zn、Cu、Cd、Pb和Cu等元素含量远高于其他水系悬浮物,这与这些流域内存在多金属矿区密切相关;不同元素在河水中迁移途径有很大差别,As以溶解态和胶体态为主要迁移形式,Pb、Zn、Cu、Cd和Ni等重金属元素以悬浮物形式迁移的比例最大;主要入湖河流中,湘江输入洞庭湖的As、Zn、Cu和Cd总量最大,年通量分别为961.43 t、478.90 t、101.67 t、59.58 t。  相似文献   

15.
In this study, the equilibrium partitioning approach was used to derive the sediment quality criteria (SQC) recommended values of eight heavy metals (Cr, Cu, Pb, Zn, Cd, As, Fe and Mn) for surface sediments taken from Lake Chaohu. The concentration of the heavy metal in the interstitial water (C IW) was determined by the film diffusion gradient technology to obtain the metal partitioning coefficient (K P). Moreover, the metal fractionation of the sediments were analyzed using European Community Bureau of Reference sequential extraction procedure and the partitioning of bound phases including total organic carbon (TOC), grain sizes and acid volatile sulfide (AVS) were also investigated. The values of K P for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn were 3,924.84, 2,276.23, 17,811.30, 738.35, 10,986.54, 718.74, 5,875.34 and 341.20 L/kg, respectively. Sediment quality criteria were normalized on the basis of fine materials, AVS, TOC and the residual metals (M R). SQC values for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn based on Chinese surface water quality criteria were derived with the values of 78.53, 56.95, 362.93, 74.68, 23.90, 71.84, 3,546.53 and 68.42 mg/kg, respectively. The suggested SQC values in this study were compared SQCs from different countries and areas, which indicated SQCs from different countries or regions appeared to have great discrepancies attributed to the difference of the physical and chemical characteristics of sediments.  相似文献   

16.
The abandoned Kilembe copper mine in western Uganda is a source of contaminants, mobilised from mine tailings into R. Rukoki flowing through a belt of wetlands into Lake George. Water and sediments were investigated on the lakeshore and the lakebed. Metal associations in the sediments reflect the Kilembe sulphide mineralisation. Enrichment of metals was compared between lakebed sediments, both for wet and dry seasons. Total C in a lakebed core shows a general increment, while Cu and Co decrease with depth. The contaminants are predominant (> 65%) in the ≤ 63 μm sediment size range with elevated Cu and Zn (> 28%), while Ni, Pb and Co are low (< 18%) in all the fractions. Sequential extraction of Fe for lakeshore sediment samples reveals low Fe mobility. Relatively higher mobility and biological availability is seen for Co, Cu and S. Heavy metal contents in lake waters are not an immediate risk to the aquatic environment.  相似文献   

17.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

18.
Sediments from San Antonio Bay, the northwest Gulf of Mexico, and the Mississippi River Delta were acid leached and analyzed for Fe, Mn, Pb, Zn, Cd, Cu and Ni by atomic absorption spectrophotometry. In order to account for differences in sediment clay, carbonate, and organic matter content, metal concentrations were normalized to Fe. Significant linear correlations of metals to Fe were obtained for unpolluted sediments and deviations from these “natural” statistical populations were found for areas thought to have metal input caused by man. San Antonio Bay sediments show little evidence of metal pollution despite 70 years of shell dredging in the bay. However, the San Antonio-Guadalupe River system, the bay's prime sediment source, has 10% to 50% higher than natural levels of Pb, Cd and Cu. Sediments from a 1500 km2 area of the Mississippi River Delta have Pb and Cd concentrations 10% to 100% higher than expected levels. The vertical distribution of Pb and Cd in these sediments suggests that inputs have occurred during the past 30 to 40 years. We find no indication of metal pollution in other areas of the Delta or along the continental shelf of the northwest Gulf of Mexico.  相似文献   

19.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

20.
The aim of this study was to determine the concentration of Pb, Zn, Cu, Cd, Cr, and Fe in sediments of the Ichkeul Lake and rivers ecosystem in northern Tunisia; their comparison with international sediment quality criteria was also proposed to assess the extent of metal pollution and their origin using various pollution indicators. For this purpose, sediment samples were collected in thirteen locations and characterized for metal content (Pb, Cr, Zn, Cu, Cd, and Fe) using the total digestion technique. Pollution level was assessed via the geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (C ), potential ecological risk (PER), and pollution load index (PLI). Our results showed that all metals were lower than the threshold effect levels (TEL), the effect range low (ERL), the probable effect level (PEL), the effect range median (ERM), and the probable effect concentration (PEC) value, except Pb and Cr (higher than TEL), the threshold effect concentration (TEC), and the toxicity reference value (TRV). The geoaccumulation index (Igeo) indicated no pollution for Cr, Cu, Zn, and Fe, but moderate pollution for Pb. The enrichment factor showed no enrichment for most of the studied metals. This was further confirmed by the contamination factor that indicated low contamination levels, with the exception of Pb. The pollution load index (PLI) showed moderate pollution status in all the studied stations in the Ichkeul Lake and rivers ecosystem. The statistical results presented similar trends of Zn and Pb probably due to their similar pollution sources. It was found that the Ichkeul Lake and river ecosystems are characterized by moderate pollution status in all the studied sites except for that of a feeder river drained from an old lead mine which had relatively high metallic concentrations of Pb and Cd. It can be argued that effective remediation strategies and environmental management plans are required to control and reduce the input of environmentally hazardous toxic pollutants (Cd and Pb). This study may serve as a useful reference tool pertinent to approaches to the remediation of the old lead mine area surrounding the Ichkeul Lake as well as other areas under similar ecological conditions..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号