首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic effects on trace element partitioning have been measured for anorthite, forsterite, and diopside grown from synthetic compositions doped with REE. A seeding technique allowed determination of crystal growth rates and partitioning information was obtained from electron microprobe analyses. Compositional deviations from equilibrium values were sought in the crystals and as gradients in the quenched liquids adjacent to the crystals. The principal result is that large deviations in trace element distribution coefficients from equilibrium values do not occur because of a compensating effect. Rapid growth depletes the melt adjacent to the crystal in the elements of which the crystal is composed, leading to different values for apparent distribution coefficients. However, as the boundary layer melt becomes depleted in the components of the crystal, growth slows and the size of the compositional perturbations decreases. Crystals grown at very high rates (e.g., > 0.2 μm/sec for diopside) tended to be too small for accurate microprobe analyses, but are probably not compositionally extreme since the melts adjacent to the crystals did not acquire sizable compositional gradients. At moderately high growth rates (e.g., 0.02 μm/sec), crystals form in the presence of boundary layer compositions perturbed by as much as 10% from bulk melt values and, in diopside, attain concentrations for excluded trace elements about 70% higher than equilibrium values for crystals plus bulk melt. At the slower growth rates typical of igneous systems, kinetic effects on trace element partitioning are probably negligible.  相似文献   

2.
Cr-droped and Cr,Li-doped forsterite crystals were grown and their optical properties were investigated. It was shown that when only Cr is doped, Cr3+ is substituted at the site of low crystal field, and the energy level 2E lie above the 4T2 level, while 4T2 is just above 2E when Cr and Li are codoped. The difference was rationalized by a deformation of the Cr substituted site with the introduction of Li.  相似文献   

3.
We carried out an experimental study to characterize the kinetics of Ostwald ripening in the forsterite-basalt system and in the plagioclase (An65)-andesite system. Eight experiments were done in each system to monitor the evolution of mean grain size and crystal size distribution (CSD) with time t; the experiments were performed in a 1-atmosphere quench furnace, at 1,250°C for plagioclase and 1,300°C for olivine. Very contrasted coarsening kinetics were observed in the two series. In the plagioclase series, the mean grain size increased as log(t), from ≈3 μm to only 8.7 μm in 336 h. The kinetic law in log(t) means that Ostwald ripening was rate-limited by surface nucleation at plagioclase-liquid interfaces. In the olivine series, the mean grain size increased as t 1/3, from ≈3 μm to 23.2 μm in 496 h. A kinetic law in t 1/3 is expected when Ostwald ripening is rate-limited either by diffusion in the liquid or by grain growth/dissolution controlled by a screw dislocation mechanism. The shape of olivine CSDs, in particular their positive skewness, indicates that grain coarsening in the olivine experiments was controlled by a screw dislocation mechanism, not by diffusion. As the degrees of undercooling ΔT (or supersaturation) involved in Ostwald ripening are essentially <1°C, the mechanisms of crystal growth identified in our experiments are expected to be those prevailing during the slow crystallisation of large magma chambers. We extrapolated our experimental data to geological time scales to estimate the effect of Ostwald ripening on the size of crystals in magmas. In the case of plagioclase, Ostwald ripening is only efficient for mean grain sizes of a few microns to 20 μm, even for a time scale of 105 years. It can, however, result in a significant decrease of the number of small crystals per unit volume, and contribute to the development of convex upwards CSDs. For olivine, the mean grain size increases from 2–3 μm to ≈70 μm in 1 year and 700 μm in 103 years; a mean grain size of 3 mm is reached in 105 years. Accordingly, the rate of grain size-dependent processes, such as compaction of olivine-rich cumulates or melt extraction from partially molten peridotites, may significantly be enhanced by textural coarsening.  相似文献   

4.
Polarized optical absorption measurements were carried out on three single crystals of Mg2SiO4 (forsterite), differently doped with Cr. Two crystals containing average 0.013 and 0.027 weight% Cr, respectively, were pulled from the melt in air, whereas one crystal containing average 0.08 weight% Cr was pulled from the melt in an argon atmosphere. The absorption spectra of the three crystals agree with each other although the intensity of single absorption bands varies significantly. In all -polarized patterns a sharp absorption line around 18000cm-1 (550 nm) appears. Conjectures are presented to assign this line to the lasing center in Cr doped forsterite which very likely exists as Cr4+ at the fourfold coordinated Si site.  相似文献   

5.
End-member synthetic fayalite and forsterite and a natural solid-solution crystal of composition (Mg1.80,Fe0.20)SiO4 were investigated using Raman spectroscopy. Polarized single-crystal spectra were measured as a function of temperature. In addition, polycrystalline forsterite and fayalite, isotopically enriched in 26Mg and 57Fe, respectively, were synthesized and their powder spectra measured. The high-wavenumber modes in olivine consist of internal SiO4 vibrations that show little variation upon isotopic substitution. This confirms conclusions from previous spectroscopic studies that showed that the internal SiO4 vibrations have minimal coupling with the lower-wavenumber lattice modes. The lowest wavenumber modes in both forsterite and fayalite shift in energy following isotopic substitution, but with energies less than that which would be associated with pure Mg and Fe translations. The low-wavenumber Raman modes in olivine are best described as lattice modes consisting to a large degree of mixed vibrations of M(2) cation translations and external vibrations of the SiO4 tetrahedra. The single-crystal spectra of forsterite and Fo90Fa10 were recorded at a number of temperatures from room temperature to about 1200 °C. From these data the microscopic Grüneisen parameters for three different Ag modes for both compositions were calculated, and also the structural state of the solid solution crystal was investigated. Small discontinuities observed in the wavenumber behavior of a low-energy mixed Mg/T(SiO4) mode between 700 and 1000 °C may be related to minor variations in the Fe–Mg intracrystalline partitioning state in the Fo90Fa10 crystal, but further spectroscopic work is needed to clarify and quantify this issue. The mode wavenumber and intensity behavior of internal SiO4 vibrations as a function of temperature are discussed in terms of crystal field and dynamic splitting and also 1 and 3 coupling. Crystal-field splitting increases only very slightly with temperature, whereas dynamical-field splitting is temperature dependent. The degree of 13 coupling decreases with increasing temperature.  相似文献   

6.
Single crystals of akermanite (Ca1–x Sr x )2Co-Si2O7 solid solution were grown in nitrogen by the floating zone method using a lamp-image furnace. The grown crystals were 6 mm in diameter by 50 mm in length. Microprobe analyses indicate uniform strontium content x except in the initially crystallized part. Synthetic crystals with x from 0.0 to 0.3 give, at room temperature, satellite reflections and circular diffuse scatterings in the electron diffraction pattern, which are related to an incommensurate phase and microdomains, respectively. With increasing Sr content the wavelength of a modulation increases and the intensity of satellites decreases, but the intensity of circular diffuse scattering increases up to x=0.15 and then decreases until eventually the satellites and the circular diffuse scatterings disappear at x = 0.3. The circular diffuse scattering is explained by the cluster model for the transition state, proposed by De Ridder et al. (1976).  相似文献   

7.
Song  Yahui  Li  Yonghui  Wang  Wenzhong  Wu  Zhongqing 《中国地球化学学报》2019,38(4):497-507

Previous theoretical studies have found that the concentration variations within a certain range have a prominent effect on inter-mineral equilibrium isotope fractionation (103lnα). Based on the density functional theory, we investigated how the average Ca–O bond length and the reduced partition function ratios (103lnβ) and 103lnα of 44Ca/40Ca in forsterite (Fo) are affected by its Ca concentration. Our results show that Ca–O bond length in forsterite ranges from 2.327 to 2.267 Å with the Ca/(Ca + Mg) varying between a narrow range limited by an upper limit of 1/8 and a lower limit of 1/64. However, outside this narrow range, i.e., Ca/(Ca + Mg) is lower than 1/64 or higher than 1/8, Ca–O bond length becomes insensitive to Ca concentration and maintains to be a constant. Because the 103lnβ is negatively correlated with Ca–O bond length, the 103lnβ significantly increases with decreasing Ca/(Ca + Mg) when 1/64 < Ca/(Ca + Mg) < 2/16. As a consequence, the 103lnα between forsterite and other minerals also strongly depend on the Ca content in forsterite. Combining previous studies with our results, the heavier Ca isotopes enrichment sequence in minerals is: forsterite > orthopyroxene > clinopyroxene > calcite ≈ diopside > dolomite > aragonite. Olivine and pyroxenes are enriched in heavier Ca isotope compared to carbonates. The 103lnα between forsterite with a Ca/(Ca + Mg) of 1/64 and clinopyroxene (Ca/Mg = 1/1, i.e., diopside) is up to ~ 0.64‰ at 1200 K. The large 103lnαFo-diopside relative to the current analytical precision for Ca isotope measurements suggests that the dependence of 103lnαFo-diopside on temperature can be used as a thermometer, similar to the one based on the 103lnα of 44Ca/40Ca between orthopyroxene and diopside. These two Ca isotope thermometers both have a precision approximate to that of elemental thermometers and provide independent constraints on temperature.

  相似文献   

8.
The activity of a given mineral component in a silicate melt can be calculated from the compositions of coexisting melt and crystals, provided that 1) the component is an independently variable component of the crystal, and 2) appropriate thermodynamic data for the component are known. This approach is used to calibrate the compositional dependence of the activities of forsterite, fayalite, anorthite, and albite from experimental data on natural mafic-to-intermediate melts. The natural logarithms of the activities of forsterite and anorthite can be closely approximated as second-degree polynomial functions of the melt composition (r 2=0.99 and 0.97, respectively); corresponding fits for fayalite and albite are significantly poorer (r 2=0.81 and 0.87, respectively). The shapes of the fitted activity surfaces yield information about speciation in silicate melts. The activity models for forsterite and anorthite provide excellent geothermometers with standard deviations of temperature residuals of approximately 10° C. These geothermometers, when combined with the activity models for fayalite and albite, can be used to predict the temperature at which olivine or plagioclase will crystallize from a melt, along with the composition of the crystals.  相似文献   

9.
Diffusivities of bivalent cations. Mg, Ni. Mn and Ca, in olivine were determined experimentally. The diffusivities of Ni and Mn in forsterite were determined by couple annealing between Ni2SiO4 and Mg2SiO4, and Mn2SiO4 and Mg2SiO4, respectively. The diffusivities of Mg and Ca in forsterite were determined by the use of 26Mg and Ca tracers, respectively. Combined with other published results, the diffusion coefficients for bivalent cation diffusion in pure forsterite along the c crystallographic axis range from 2.45 × 10?11 to 1.4 × 10?13 cm2 sec?1 at 1200°C, in the order of Fe > Mn > Co > Ni > Mg > Ca. The results suggest that the diffusivity is governed by at least two factors, i.e. the size of the diffusing ionic species and the change of defect density in the crystal structure which is induced by substitution of diffusing ion for Mg ion.  相似文献   

10.
Plagioclase buoyancy experiments have been carried out in a high-temperature centrifuge furnace using seventeen basaltic liquids and plagioclase crystals of three compositions: An89, An76 and An55. The results show that the floating tendency of plagioclase in basaltic liquids is at least 0.03 g/cm3 greater than indicated by the calculations. If this correction factor is applied to calculations of plagioclase buoyancy in the Skaergaard Intrusion, it is found that the plagioclase crystals in the lower and middle zones were less dense than the coexisting liquids.Other phenomena relevant to crystal transport in basaltic liquids were observed in the centrifuge experiments. These included crystal flotation by rising bubbles, plagioclase sinking because of the formation of plagioclase-magnetite composite grains, graded bedding of olivine and magnetite, and more than 60% intercumulus basaltic liquid between settled olivine crystals.  相似文献   

11.
Recent work has established that marine teleost (bony) fish represent a prolific source of mud grade, mainly high‐Mg calcite, carbonate sediment by means of primary precipitation within the intestine. Previously documented crystalline products display a diverse array of morphologies, many unique in shallow tropical marine settings, and have a wide range of magnesium contents (from 18 to 39 mol% MgCO3). This study utilizes scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction and liquid ion chromatography to provide a more extensive and expansive morphological, mineralogical and chemical characterization of the crystalline forms produced by a wider range of piscine functional groups (covering 21 different fish species common in The Bahamas). Several crystal morphologies not previously described in fish‐derived carbonates are documented, and chemical composition is found to be more variable than previously reported: in addition to high‐Mg calcites with >18 mol% MgCO3, high‐Mg calcites with lower MgCO3 contents and low‐Mg calcites are identified. From the expanded species range, MgCO3 content in fish‐derived carbonates ranges from ca 0˙5 to > 40 mol%, and particle length is in the range 0˙1 to >50 μm (typically <2 μm for individual crystals). Amorphous Mg‐carbonates (with detectable CaCO3 of <2 mol%) are also found to varying extent in the precipitates of many species. Dominant mineralogy and MgCO3 content varies with producing species and crystal morphology (itself a species‐dependent variable). Given the very small grain size and often high MgCO3 contents of these carbonates, interesting questions arise about their preservation potential. Thus, the extent to which carbonates produced by different species may follow different post‐excretion preservation pathways is considered.  相似文献   

12.
Studies of mass transport and kinetics in minerals at high pressure often require a sample environment in which the stress is near-hydrostatic and the chemical environment is carefully controlled. We report here details of a multianvil sample assembly in which these requirements are fulfilled and which has been used to study the effect of pressure on the kinetics of dislocation recovery in olivine up to 10 GPa. Annealing experiments have been performed on single crystals of San Carlos olivine at 8.5 GPa and 1400° C in a 1200 tonne split-sphere multianvil apparatus. The sample assembly consists of an 18 mm MgO octahedron with a LaCrO3 heater of variable wall thickness to give a small temperature variation (20° C) along the 3 mm length of the sample capsule. To minimize the differential stress on the sample, the olivine single crystal is surrounded by NaCl and both pressurization and depressurization are performed slowly at a temperature of 600° C (to minimize the strength of the NaCl). The silica activity is buffered by orthopyroxene powder in contact with the olivine and the oxygen fugacity is buffered by Ni + NiO within the sample capsule. The H2O-content of the sample assembly is minimized by drying all components at 230° C under vacuum. Olivine single crystals recovered after annealing at 1400° C and 8.5 GPa show no evidence of deformation, either ductile or brittle. Dislocation densities of 109–1010 m-2 are similar to those observed prior to high-pressure annealing and indicate differential stresses of <10 mpa.=" infrared=" spectroscopy=" indicates=" that=" the=" hydrogen=" content=" of=" a=" sample=" annealed=" at=" 10=" gpa,=" 1500°=" c=" for=" 21=" h=" is=">13 H/106Si, which, although low, is higher than that of the crystals prior to high-pressure annealing. Finally, the effectiveness of the fO2 buffer has been verified by estimating the fO2 at the surface of the sample from the solubility of Fe in Pt metal in equilibrium with the olivine and orthopyroxene.  相似文献   

13.
Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO3, CaCl2 and MgCl2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (<8 h), while Mg-calcite was the predominant precipitate (>95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms.The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 103lnαMg-cl-H2O) displayed a strong dependence on the mol% MgCO3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ18O values for the bulk solid, 103lnαMg-cl-H2O increased at a rate of 0.17 ± 0.02 per mol% MgCO3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 103lnαMg-cl-H2O for precipitation rates that ranged from 103.21 to 104.60 μmol · m−2 · h−1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 103lnαMg-cl-H2O due to the heterogeneous nature of the solid.The results of this study suggest that paleotemperatures inferred from the δ18O values of high magnesian calcite (>10 mol% MgCO3) may be significantly underestimated. Also, the results underscore the need for additional experiments to accurately characterize the effect of Mg coprecipitation on the isotope systematics of calcite from a chemically homogeneous precipitate or a heterogeneous material that is analyzed at the scale of chemical and isotopic zonation.  相似文献   

14.
15.
Pure forsterite crystals were grown from hydrous melts using controlled cooling experiments at 2.0 GPa and varying the bulk Mg/Si ratio from 2.0 to 1.5. Oriented single crystals were then studied by polarised infrared spectroscopy. The spectra of the samples with the lowest silica activity (aSiO2) contain the main OH bands in the range 3,620–3,450 cm–1 only. In contrast, the spectra of the samples synthesised with the highest aSiO2 contain additional pleochroic bands at 3,160, 3,220 and 3,600 cm–1. The variations are interpreted in terms of protonated silicon vacancies being dominant at low aSiO2 and Mg vacancies dominant at high aSiO2. Xenolithic mantle olivines generally do not have the spectrum expected for orthopyroxene buffered conditions, suggesting that they re-equilibrated with their host melts during ascent, but mantle olivine from the Zabargad peridotite massif probably is in equilibrium with the coexisting orthopyroxene.Editorial responsibility: T.L. Grove  相似文献   

16.
Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa<2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O < −20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < −20‰), whereas those of (iii) are 16O-depleted (Δ17O = −6‰ to −4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ −22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ −11‰).We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.  相似文献   

17.
Single crystals of (Ca1–xSrx)2MgSi2O7 slightly doped with 1000 ppm Mn2+ and with x ranging from 0.04 to 0.32 were grown from the melt in a mirror furnace applying the Czochalski technique. Transmission electron microscopy (TEM) revealed incommensurately modulated structures at room-temperature for all compositions in accordance with earlier studies by electron paramagnetic resonance (EPR). Electron diffraction patterns clearly show satellite reflections typical for two-dimensional modulation, and their successive destabilization with increasing Sr content. The modulation is of tartan-like appearance. Beyond a Sr/(Sr+Ca) ratio of about 0.32 the synthesis of stable solid solution åkermanite type crystals was proved not to be feasible, indicating the existence of a miscibility gap in the Sr åkermanite system. As presumed from the diffuse scattering around the satellite reflections, and suggested more conclusively by crystallographic processing of high resolution EM images the Sr ions incorporated into the incommensurate crystal phase are distributed in an ordered fashion and are partly adapted to the displacive modulation of the pure åkermanite. This means, occupational modulation even makes a contribution to the overall modulation characteristics in (Ca1–xSrx)2 MgSi2O7.  相似文献   

18.
Milke et al. (Contrib Mineral Petrol 142:15–26, 2001) studied the diffusion of Si, Mg and O in synthetic polycrystalline enstatite reaction rims. The reaction rims were grown at 1,000°C and 1 GPa at the contacts between forsterite grains with normal isotopic compositions and a quartz matrix extremely enriched in 18O and 29Si. The enstatite reaction rim grew from the original quartz-forsterite interface in both directions producing an inner portion, which replaced forsterite and an outer portion, which replaced quartz. Here we present new support for this statement, as the two portions of the rim are clearly distinguished based on crystal orientation mapping using electron backscatter diffraction (EBSD). Milke et al. (Contrib Mineral Petrol 142:15–26, 2001) used the formalism of LeClaire (J Appl Phys 14:351–356, 1963) to derive the coefficient of silicon grain boundary diffusion from stable isotope profiles across the reaction rims. LeClaires formalism is designed for grain boundary tracer diffusion into an infinite half space with fixed geometry. A fixed geometry is an undesired limitation in the context of rim growth. We suggest an alternative model, which accounts for simultaneous layer growth and superimposed silicon and oxygen self diffusion. The effective silicon bulk diffusivity obtained from our model is approximately equal within both portions of the enstatite reaction rim: D Si,En eff =1.0–4.3×10–16 m2 s–1. The effective oxygen diffusion is relatively slow in the inner portion of the reaction rim, D O,En eff =0.8–1.4×10–16 m2 s–1, and comparatively fast, D O,En eff =5.9–11.6×10–16 m2 s–1, in its outer portion. Microstructural evidence suggests that transient porosity and small amounts of fluid were concentrated at the quartz-enstatite interface during rim growth. This leads us to suspect that the presence of an aqueous fluid accelerated oxygen diffusion in the outer portion of the reaction rim. In contrast, silica diffusion does not appear to have been affected by the spatial variation in the availability of an aqueous fluid.
  相似文献   

19.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

20.
Part I of this contribution (Gardés et al. in Contrib Mineral Petrol, 2010) reported time- and temperature-dependent experimental growth of polycrystalline forsterite-enstatite double layers between single crystals of periclase and quartz, and enstatite single layers between forsterite and quartz. Both double and single layers displayed growth rates decreasing with time and pronounced grain coarsening. Here, a model is presented for the growth of the layers that couples grain boundary diffusion and grain coarsening to interpret the drop of the growth rates. It results that the growth of the layers is such that (Δx)2 ∝ t 1−1/n , where Δx is the layer thickness and n the grain coarsening exponent, as experimentally observed. It is shown that component transport occurs mainly by grain boundary diffusion and that the contribution of volume diffusion is negligible. Assuming a value of 1 nm for the effective grain boundary width, the following Arrhenius laws for MgO grain boundary diffusion are derived: log D gb,0Fo (m2/s) = −2.71 ± 1.03 and E gbFo = 329 ± 30 kJ/mol in forsterite and log D gb,0En (m2/s) = 0.13 ± 1.31 and E gbEn = 417 ± 38 kJ/mol in enstatite. The different activation energies are responsible for the changes in the enstatite/forsterite thickness ratio with varying temperature. We show that significant biases are introduced if grain boundary diffusion-controlled rim growth is modelled assuming constant bulk diffusivities so that differences in activation energies of more than 100 kJ/mol may arise. It is thus important to consider grain coarsening when modelling layered reaction zones because they are usually polycrystalline and controlled by grain boundary transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号