首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 373 毫秒
1.
岩石圈流变学是大陆岩石变形的主导因素之一,是一种研究地球深部岩体变形的新方法。简要介绍流变学对大陆动力学研究的影响,并对当前流变学研究进展进行评述。岩石圈流变学在岩石圈地层、造山带和大型盆地动力学和动力学特征研究中的应用非常广泛。近年来,岩石圈流变学在脆-塑性转换、岩石流变含水性、“三明治”结构及岩石流变律等方面有重大进展。最后,指出目前岩石圈流变学还存在一些亟待解决的问题,如时间因素。  相似文献   

2.
超高压榴辉岩流变学研究   总被引:2,自引:0,他引:2  
大陆岩石圈和大洋岩石圈在成分、厚度和力学强度方面有明显的差别。因此,现有板块构造不完全适合于大陆构造。大陆地壳和上地幔流变学的综合研究是认识大陆构造最佳途径之一。流变学研究是大陆造山带几何学、运动学和动力学的桥梁。大陆岩石圈对构造作用、重力不稳定性和热结构的响应在很大程度上取决于岩石流变强度。岩石圈流变性质是岩石圈分层、构造复杂性和塑性流动的主导控制因素。超高压榴辉岩在地幔对流、壳-幔物质循环和俯冲带动力学起着重要作用。榴辉岩的流变性质和变形机制对于阐明大陆造山带和大陆深俯冲的动力学过程具有十分重要的意义。本文主要内容包括以下4个方面:(1)岩石流变学研究在地球动力学中地位和重要性;(2)回顾池际尚先生对岩石流变学实验的贡献;(3)近几年来超高压榴辉岩流变学研究成果;(4)国外岩石流变学实验研究发展态势和启示。  相似文献   

3.
嵇少丞  黎乐  许志琴 《地质学报》2021,95(1):159-181
地球是一动态系统,其各层圈的构造运动归根究底就是多矿物复合岩石及其中各主要造岩矿物在变化的物理条件(例如,温度、围压、差应力、应变速率、应变方式等)下和化学环境(例如,氧逸度和水含量)中的形变。岩石流变学是一门研究岩石力学性质和变形行为的科学,现已成为定量大陆动力学和构造地质学发展的一个瓶颈,超越这个瓶颈,学科才能大踏步前进。本文对过去四十年来岩石流变学的实验和韧性变形域内古应力研究成果做了简明扼要的总结,特别关注尚存的问题与急需克服的困难。强调运用现代材料学、地球物理学和地球化学的新理论和新方法,改进与完善高温高压实验设备,提高其力学测量的灵敏度和准确度。而且必须采用大应变的实验途径解决稳态蠕变与稳态显微构造的问题,保证实验所获流动律外延至自然界的合理性与稳定性。鼓励那些有坚实积累、开阔视野和科学思维的青年学者,开拓进取,在岩石圈流变学与大陆动力学领域做出经得起时间淘洗、实践检验的原创性成果来。  相似文献   

4.
华北克拉通晚中生代壳-幔拆离作用: 岩石流变学约束   总被引:6,自引:5,他引:1  
大陆岩石圈的流变学结构对于岩石圈深部过程(壳/幔过程)有着深刻的影响,直接表现在岩石圈壳-幔结构与浅部构造上.本文注意到华北克拉通晚中生代岩石圈减薄期间地壳的伸展、拆离与减薄在不同地区的宏观、微观构造及地壳岩石流变学等方面的差异表现与区域变化,以及现今和晚中生代时期岩石圈厚度的不均匀性.讨论了以水为主体的地质流体的存在对于岩石圈流变性的影响.综合克拉通东部与西部地壳/地幔厚度变化特点以及下地壳和上地幔含水性特点,阐述了晚中生代时期华北克拉通岩石圈内部壳幔耦合与解耦的规律,提出了华北岩石圈壳-幔拆离作用模型以解释华北克拉通晚中生代岩石圈减薄的基本现象与深部过程.提出区域性伸展作用是岩石圈减薄的主要动力学因素,东部地区在晚中生代伸展作用过程中壳-幔具有典型的解耦性,上部地壳、下部地壳和岩石圈地幔的变形具有显著差异性.而西部区壳幔总体具有耦合性,下地壳与岩石圈地幔共同构成流变学强度很高且难以变形的岩石圈根.  相似文献   

5.
含熔体差应力状态下中下地壳岩石的变形结构与物质迁移   总被引:1,自引:0,他引:1  
通过对辉长岩、麻粒岩、斜长角闪岩高温高压变形实验样品的研究,确立了含熔体差应力状态下中下地壳岩石共轭扇式变形模型的合理性,划分出垂直于轴向压应力定向和剪切定向两种变形组构。并通过对主要变形矿物、变形组构的识别,详细勾画了辉长岩、麻粒岩、斜长角闪岩3种典型中下地壳岩石的变形结构图式和变形机制。辉长岩为弥散带状变形结构,麻粒岩、斜长角闪岩为共轭扇式模型结构;中下地壳岩石的变形可能主要集中在流变性最强的一种或者几种组分上;变形集中化的过程,也往往是某些组分集中化的过程;变形不仅是造成岩石圈深部层次物化环境不均一性的重要因素,也是成矿的重要条件。  相似文献   

6.
大陆下地壳麻粒岩的流变学研究进展   总被引:1,自引:0,他引:1  
大险下地壳麻粒岩的流变学研究可以解释地壳变形、壳幔物质交换以及岩石圈深部动力学过程等科学问题.前人通过研究各矿物的显微构造变形特征与变形机制,运用广义混合流变律探讨多矿物复合岩石的流变性质,结合水与流体对岩石变形强度的弱化作用,阐明在大陆下地壳变形环境下复矿麻粒岩的塑性变形和韧性流变性质.目前人们致力于对天然变形岩石和...  相似文献   

7.
流变学:构造地质学和地球动力学的支柱学科   总被引:6,自引:6,他引:6  
地球是一动态系统,其各层圈的构造运动归根到底就是多矿物复合岩石在各种物理条件(例如,温度、围压、差应力、应变速率、应变方式等)下和化学环境(例如,氧逸度和水含量)中的形变。流变学作为研究岩石力学性质和变形行为的科学,现已成为地球动力学和构造地质学的支柱学科。本文对国际上近年来岩石流变学的最新进展做些扼要的介绍,呼吁中国固体地学界加强流变学的研究,做出经得起时间淘洗、实践检验的原创性成果来,使中国的构造地质学研究迈进国际先进的行列。  相似文献   

8.
岩石流变学研究的内容主要有:流变试验、本构模型、时效强度及其工程应用等.岩石流变学已成为岩石力学中的一个重要分支,对岩石流变学的研究将具有十分重要的现实意义.  相似文献   

9.
岩石古流变性质的构造研究进展   总被引:9,自引:1,他引:8  
岩石古流变性质研究是大陆动力学研究的一个重要方面。岩石古流变性质研究的一个发展方向是通过比例模型,建立流变参数与构造变形几何参数之间的定量关系,再利用天然岩石构造变形几何参数的定量测定,反推在形成这些变形时所处物理化学条件下的岩石流变参数。对利用露头尺度地质构造的定量测量研究岩石古流变性质的方法与进展做了重点介绍。  相似文献   

10.
大陆岩石圈的流变学性质和矿物中的水   总被引:2,自引:0,他引:2  
评述了近些年来岩石圈(尤其是大陆岩石圈)流变学研究中的主要进展。这些研究中最重要的一个发现是水的存在可以显著地增强岩石的变形,从而对其流变性质产生明显影响。大陆岩石圈的流变性质比大洋岩石圈要复杂得多,尤其是较深处的下地壳和岩石圈地幔之间流变性质的对比和差异成为近些年来人们争执较大的问题。大陆岩石圈的流变性质可能具有显著的不均一性,不仅体现在垂向上,也体现在横向上。根据流变学实验研究的进展和对深部壳幔捕虏体中主要构成矿物结构水含量的测定,对华北克拉通深部岩石圈的流变性质进行了定量计算。结果表明华北克拉通在重力梯度带两侧的岩石圈有着截然不同的流变特征,这种差异可能对两侧不同的岩石圈动力学过程有重要的影响。  相似文献   

11.
超高压变质岩的塑性流变学   总被引:1,自引:1,他引:0  
钟增球  索书田 《现代地质》2007,21(2):203-212
岩石流变作用是大陆造山作用的基本特征,超高压岩石的形成和折返过程也是大陆深俯冲带内物质的复杂流变过程。要深入理解大陆造山带的造山作用和大陆壳岩石的深俯冲和折返动力学过程,必须对大陆地壳及地幔岩石的流变学进行深入研究。岩石圈流变学的主要研究内容主要包括流变学分层性、变形分解和应变局部化及大陆壳岩石部分熔融作用的流变学效应等。应用岩石圈流变学的基本原理和方法,分析了大别-苏鲁超高压变质带中超高压变质岩的塑性流变特点,探讨了超高压变质岩形成和折返过程的塑性流变学。  相似文献   

12.
大陆中部地壳应变局部化与应变弱化   总被引:1,自引:1,他引:0  
刘俊来 《岩石学报》2017,33(6):1653-1666

大陆岩石圈流变学研究是构造地质学学科发展的必然,也是发展板块构造理论、探索大陆板块内部变形与动力学演化的核心问题。大陆中部地壳是大陆岩石圈中一个具有特殊性的圈层,其主要成分以花岗质岩石为代表,位于岩石脆-韧性转变域。在中部地壳层次上,岩石既具有脆性变形特点,又具有韧性变形属性,而且常常表现出多种流变强度。研究成果显示,中部地壳岩石流变具有许多特殊性:1)应变局部化是中部地壳流动最为典型表现形式;2)存在大陆地壳多震层:多震与强震,显示出中部地壳既弱又强的流变学属性;3)液/岩反应强烈,流体相直接影响着岩石的流变性;4)在许多地区存在有地球物理异常体(低速高导体)。大陆中部地壳应变局部化是板块相互作用过程中地壳层次上应变积累与集中的重要表现。在宏观尺度、中小型尺度和微观尺度上都有着重要的构造特点。地壳岩石的应变弱化,是诱发应变局部化的主要机制。多种形式的水致弱化(包括液压致裂、反应弱化、水解弱化等)与结构弱化(包括细粒化、晶格取向、成分分带性等)对于应变局部化具有重要的贡献。大陆地壳岩石流变学、中部地壳弱化与应变局部化研究,是未来岩石圈流变学研究的重要方向。

  相似文献   

13.
Paterson高温高压流变仪及其在岩石流变学的应用   总被引:3,自引:1,他引:3  
地球作为一个动态体系,其内部岩石在各种物理化学条件下变形,形成各种地质构造.在过去的几十年里,得益于相关测试分析手段的不断发展,地球材料的流变学研究取得了许多实验突破,加深了人类对地壳和上地幔岩石变形行为的理解.本文对实验岩石变形装置的技术发展做了扼要的回顾,重点介绍了Paterson高温高压流变仪(HPT).HPT是...  相似文献   

14.
大陆岩石圈流变学研究   总被引:2,自引:1,他引:2  
简单介绍了流变学的概念和两种基本研究方法,基于大陆岩石圈较大洋岩石圈有更为复杂的流变特征客观事实,指出研究大陆岩石圈流变学的重要性,并提出几个主要的研究方向和领域。  相似文献   

15.
超高压变质岩中柯石英-石英相变动力学研究的评述   总被引:2,自引:0,他引:2  
含柯石英超高压变质岩的发现是陆过 幔深部俯冲的岩石学语气也揭示了深部变质深种物折返地表的可能性。超高压变质岩的开 折返机制是当前地球科学中最有挑战性的前沿课题之一,具有深刻的大陆动力学意义。  相似文献   

16.
侯泉林  LU Lucy Xi  程南南 《岩石学报》2021,37(8):2271-2275

构造地质学是地质学的核心基础学科,其发展方向是目前构造地质学家面临的挑战之一。本文从构造作用的本质出发,试图对构造地质学的发展方向进行思考。构造作用本质上是岩石和矿物对应力作用的响应,包括物理响应和化学响应,进而用数学方法进行表达:(1)物理响应主要表现为变形,包括脆性变形和韧性变形。岩石的力学性能决定了其变形特征。岩石圈力学性能在时间和空间上的不均一性一直是研究岩石圈变形行为的巨大挑战。需要结合野外观测、岩石力学和流变学研究,并借助多尺度模拟方法来建立不同时间尺度和空间尺度下岩石的变形行为和变形准则。(2)化学响应主要指构造应力作用下岩石和矿物发生化学变化的过程,即应力化学作用。变形变质作用、剪切带成矿作用、剪切带石墨化、应力生气和生烃等方面都可能存在应力化学过程,但其详细过程和反应机理还需要进一步探究。(3)运用数值模拟、量子计算对以上这些构造过程进行数学表达,也是构造地质学未来发展值得关注的方向。总之,构造地质学未来的发展方向应是与物理学、化学乃至数学等基础学科的深度融合。

  相似文献   

17.
Quantitative analysis of the structural evolution of jadeite‐quartzite, a rare ultra‐high pressure (UHP) rock type from the Dabie Mountains of eastern China, sheds light on the formation and evolution of UHP orogenic belts worldwide. Geological mapping of the Shuanghe area, where jadeite‐quartzites crop out, was carried out to determine the spatial relationships between different UHP rocks within this orogen. The deformation mechanisms of jadeite‐quartzite, geodynamical parameters (stress, strain, strain rate), and microstructure including lattice preferred orientation (LPO) were determined from six jadeite‐quartzite samples from the Shuanghe area. LPOs of clinopyroxene (jadeite and omphacite), garnet, rutile and quartz from these jadeite‐quartzite samples are compared with those of three eclogites preserving different degrees of deformation from the Shuanghe area. Microstructural LPOs of jadeite, omphacite, garnet, rutile and quartz were determined using electron backscattered diffraction (EBSD) analysis. Quartz fabrics were largely recrystallized during late, low‐grade stages of deformation, whereas garnet shows no strong LPO patterns. Rutile fabrics show a weak LS fabric along [001]. Jadeite and omphacite show the strongest eclogite facies LPO patterns, suggesting that they may provide important information about mantle deformation patterns and control the rheology of deeply subducted continental crust. Microstructural data show that the jadeite LPO patterns are similar to those of omphacite and vary between L‐ and S‐types, which correlate with prolate and oblate grain shape fabrics (SPO); quartz LPOs are monoclinic. Microstructural analysis using TEM shows that the dominant slip systems of jadeite in one sample are (100)[001], (110)[001] and (1 1 0)1/2[110], while in another sample, no dislocations are observed. Abundant dislocations in quartz were accommodated by the dominant slip system (0001)[110], indicating basal glide and represents regional shearing during the exhumation process. This suggests that dislocation creep is the dominant fundamental deformation mechanism in jadeite under UHP conditions. The protoliths of jadeite‐quartzite, metasedimentary rocks from the northern passive continental margin of the Yangtze craton, experienced the same deep subduction and were deformed under similar rheological conditions as other UHP eclogite, marble and paragneiss. Experimental UHP deformation of quartzo‐feldspathic gneiss with a chemical composition similar to the bulk continental crust has shown that the formation of a jadeite–stishovite rock is associated with a density increase of the host rock similar to the eclogite conversion from basaltic protoliths. The resulting rock can be denser than the surrounding mantle pyrolite up to depths of 660 km (24 GPa). Thus, processes of deep continental subduction may be better‐understood through understanding the rheology and mechanical behaviour of jadeite. Jadeite‐quartzites such as those from the Shuanghe may be exhumed remnants of deeply‐subducted slabs of continental crust, other parts of which subducted past the ‘depth of no return’, and remain in the deep mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号