首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The landslide hazard occurred in Taibai County has the characteristics of the typical landslides in mountain hinterland. The slopes mainly consist of residual sediments and locate along the highway. Most of them are in the less stable state and in high risk during rainfall in flood season especially. The main purpose of this paper is to produce landslide susceptibility maps for Taibai County (China). In the first stage, a landslide inventory map and the input layers of the landslide conditioning factors were prepared in the geographic information system supported by field investigations and remote sensing data. The landslides conditioning factors considered for the study area were slope angle, altitude, slope aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, normalized difference vegetation index, lithological unit, rainfall and land use. Subsequently, the thematic data layers of conditioning factors were integrated by frequency ratio (FR), weights of evidence (WOE) and evidential belief function (EBF) models. As a result, landslide susceptibility maps were obtained. In order to compare the predictive ability of these three models, a validation procedure was conducted. The curves of cumulative area percentage of ordered index values vs. the cumulative percentage of landslide numbers were plotted and the values of area under the curve (AUC) were calculated. The predictive ability was characterized by the AUC values and it indicates that all these models considered have relatively similar and high accuracies. The success rate of FR, WOE and EBF models was 0.9161, 0.9132 and 0.9129, while the prediction rate of the three models was 0.9061, 0.9052 and 0.9007, respectively. Considering the accuracy and simplicity comprehensively, the FR model is the optimum method. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

2.
The main aim of this study was to produce landslide susceptibility maps using statistical index (SI), certainty factors (CF), weights of evidence (WoE) and evidential belief function (EBF) models for the Long County, China. Firstly, a landslide inventory map, including a total of 171 landslides, was compiled on the basis of earlier reports, interpretation of aerial photographs and supported by extensive field surveys. Thereafter, all landslides were randomly separated into two data sets: 70% landslides (120 points) were selected for establishing the model and the remaining landslides (51 points) were used for validation purposes. Eleven landslide conditioning factors, such as slope aspect, slope angle, plan curvature, profile curvature, altitude, distance to faults, distance to roads, distance to rivers, lithology, NDVI and land use, were considered for landslide susceptibility mapping in this study. Then, the SI, CF, WoE and EBF models were used to produce the landslide susceptibility maps for the study area. Finally, the four models were validated using area under the curve (AUC) method. According to the validation results, the EBF model (AUC = 78.93%) has a higher prediction accuracy than the SI model (AUC = 77.72%), the WoE model (AUC = 77.62%) and the CF model (AUC = 77.72%). Similarly, the validation results also indicate that the EBF model has the highest training accuracy of 80.25%, followed by SI (79.80%), WoE (79.71%) and CF (79.67%) models.  相似文献   

3.
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning.  相似文献   

4.
Abstract

This study addresses landslide susceptibility mapping (LSM) using a novel ensemble approach of using a bivariate statistical method (weights of evidence [WoE] and evidential belief function [EBF])-based logistic model tree (LMT) classifier. The performance and prediction capability of the ensemble models were assessed using the area under the ROC curve (AUROC), standard error, 95% confidence intervals and significance level P. Model performance analyses indicated that the AUROC values of the WoE–LMT ensemble model using the training and validation data-sets were 86.02 and 85.9%, respectively, whereas those of the EBF–LMT ensemble model were 88.2 and 87.8%, respectively. On the other hand, the AUC curves for the four landslide susceptibility maps indicated that the AUC values of the ensemble models of WoE–LMT (85.11 and 83.98%) and EBF–LMT (86.21 and 85.23%) could improve the performance and prediction accuracy of single WoE (84.23 and 82.46%) and EBF (85.39 and 81.33%) models for the training and validation data-sets.  相似文献   

5.
Abstract

In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, plan curvature, topographic wetness index (TWI), stream sediment transport index (STI), stream power index (SPI), distance to rivers, distance to faults, distance to roads, lithology, normalized difference vegetation index (NDVI), and land use. The importance of factors was assessed using correlation attribute evaluation method. Finally, the performance of three models was evaluated using the area under the curve (AUC). The validation process indicated that the EBF-LMT model acquired the highest AUC for the training (84.7%) and validation (76.5%) datasets, followed by EBF-LR and EBF models. Our result also confirmed that combination of a decision tree-logistic regression-based algorithm with a bivariate statistical model lead to enhance the prediction power of individual landslide models.  相似文献   

6.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

7.
Landslides susceptibility maps were constructed in the Pyeong-Chang area, Korea, using the Random Forest and Boosted Tree models. Landslide locations were randomly selected in a 50/50 ratio for training and validation of the models. Seventeen landslide-related factors were extracted and constructed in a spatial database. The relationships between the observed landslide locations and these factors were identified by using the two models. The models were used to generate a landslide susceptibility map and the importance of the factors was calculated. Finally, the landslide susceptibility maps were validated. Finally, landslide susceptibility maps were generated. For the Random Forest model, the validation accuracy in regression and classification algorithms showed 79.34 and 79.18%, respectively, and for the Boosted Tree model, these were 84.87 and 85.98%, respectively. The two models showed satisfactory accuracies, and the Boosted Tree model showed better results than the Random Forest model.  相似文献   

8.
Flood is one of the most devastating natural disasters with socio-economic and environmental consequences. Thus, comprehensive flood management is essential to reduce the flood effects on human lives and livelihoods. The main goal of this study was to investigate the application of the frequency ratio (FR) and weights-of-evidence (WofE) models for flood susceptibility mapping in the Golestan Province, Iran. At first, a flood inventory map was prepared using Iranian Water Resources Department and extensive field surveys. In total, 144 flood locations were identified in the study area. Of these, 101 (70%) floods were randomly selected as training data and the remaining 43 (30%) cases were used for the validation purposes. In the next step, flood conditioning factors such as lithology, land-use, distance from rivers, soil texture, slope angle, slope aspect, plan curvature, topographic wetness index (TWI) and altitude were prepared from the spatial database. Subsequently, the receiver operating characteristic (ROC) curves were drawn for produced flood susceptibility maps and the area under the curves (AUCs) was computed. The final results indicated that the FR (AUC = 76.47%) and WofE (AUC = 74.74%) models have almost similar and reasonable results. Therefore, these flood susceptibility maps can be useful for researchers and planner in flood mitigation strategies.  相似文献   

9.
Water shortage and population growth in Iran rapidly diminish groundwater supplies. Thus, finding the techniques such as GIS that can be used as powerful tools in groundwater management, and predicting groundwater potential is required. The main objective of this study is to evaluate the efficiency of the statistical index (SI), frequency ratio (FR) weights of evidence (WoE) and evidential belief function (EBF) models for groundwater potential mapping at Kuhdasht region, Lorestan province, Iran. For this purpose, 12 groundwater influencing factors were considered in this investigation. From 171 available wells in the study area, 114 wells (67%) and 57 wells (33%) were used based on random selection in SI, FR, WoE and EBF models as training and validation data-sets, respectively. The area under the ROC curve (AUC) for SI, FR, WoE and EBF models was calculated as 91.8, 91, 93.6 and 93.3%, respectively. These curve values indicated that all four models have reasonably good accuracy in spatially predicting groundwater potential in this area.  相似文献   

10.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   

11.
In the present study, Remote Sensing Technique and GIS tools were used to prepare landslide susceptibility map of Shiv-khola watershed, one of the landslide prone part of Darjiling Himalaya, based on 9 landslide inducing parameters like lithology, slope gradient, slope aspect, slope curvature, drainage density, upslope contributing area, land use and land cover, road contributing area and settlement density applying Analytical Hierarchy Approach (AHA). In this approach, quantification of the factors was executed on priority basis by pair-wise comparison of the factors. Couple comparing matrix of the factors were being made with reasonable consistency for understanding relative dominance of the factors as well as for assigning weighted mean/prioritized factor rating value for each landslide triggering factors through arithmetic mean method using MATLAB Software. The factor maps/thematic data layers were generated with the help of SOI Topo-sheet, LIIS-III Satellite Image (IRS P6/Sensor-LISS-III, Path-107, Row-052, date-18/03/2010) by using Erdas Imagine 8.5, PCI Geomatica, Arc View and ARC GIS Software. Landslide frequency (%) for each class of all the thematic data layers was calculated to assign the class weight value/rank value. Then, weighted linear combination (WLC) model was implied to determine the landslide susceptibility coefficient value (LSCV or ??M??) integrating factors weight and assigned class weight on GIS platform. Greater the value of M, higher is the propensity of landslide susceptibility over the space. Then Shivkhola watershed was classified into seven landslide susceptibility zones and the result was verified by ground truth assessment of existing landslide location where the classification accuracy was 92.86 and overall Kappa statistics was 0.8919.  相似文献   

12.
Forest fires are considered one of the most highly damaging and devastating of natural disasters, causing considerable casualties and financial losses every year. Hence, it is important to produce susceptibility maps for the management of forest fires so as to reduce their harmful effects. The purpose of this study is to map the susceptibility to forest fires over Nowshahr County in Iran, using an integrated approach of index of entropy (IOE) with fuzzy membership value (FMV), frequency ratio (FR), and information value (IV) with a comparison of their precision. The spatial database incorporated the inventory of forest fire and conditioning factors. As a whole, 41 forest fire locations were identified. Out of these, 29 locations (≈70%) were randomly chosen for the forest fire susceptibility modeling (FFSM), and the remaining 12 locations (≈30%) were utilized for the validation of the models. Subsequently, utilizing FMV‐IOE, FR‐IOE, and IV‐IOE models, forest fire susceptibility maps were acquired. Finally, the modeling ability of the models for FFSM was assessed using an area under the receiver operating characteristic (AUROC) curve. The results manifested that the prediction accuracy of the FMV‐IOE model is slightly higher than that of the FR‐IOE and IV‐IOE models. The incorporation of IOE with FMV, FR, and IV models had AUROC values of 0.890, 0.887, and 0.878, respectively. The resulting FFSM can be effective in fire repression resource planning, sustainable development, and primary warning in regions with similar conditions.  相似文献   

13.
Avalanche activities in the Indian Himalaya cause the majority of fatalities and responsible for heavy damage to the property. Avalanche susceptibility maps assist decision-makers and planners to execute suitable measures to reduce the avalanche risk. In the present study, a probabilistic data-driven geospatial fuzzy–frequency ratio (fuzzy–FR) model is proposed and developed for avalanche susceptibility mapping, especially for the large undocumented region. The fuzzy–FR model for avalanche susceptibility mapping is initially developed and applied for Lahaul-Spiti region. The fuzzy–FR model utilized the six avalanche occurrence factors (i.e. slope, aspect, curvature, elevation, terrain roughness and vegetation cover) and one referent avalanche inventory map to generate the avalanche susceptibility map. Amongst 292 documented avalanche locations from the avalanche inventory map, 233 (80%) were used for training the model and remaining 59 (20%) were used for validation of the map. The avalanche susceptibility map is validated by calculating the area under the receiver operating characteristic curve (ROC-AUC) technique. For validation of the results using ROC-AUC technique, the success rate and prediction rate were calculated. The values of success rate and prediction rate were 94.07% and 91.76%, respectively. The validation of results using ROC-AUC indicated the fuzzy–FR model is appropriate for avalanche susceptibility mapping.  相似文献   

14.
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。  相似文献   

15.
The Likelihood Ratio (LR) Model has been applied as an improvement upon the Frequency Ratio (FR) that computes the ratio of the percentage of the landslide pixels to the percentage of the non-landslide pixels instead of the total number of pixels used in the denominator as in case of the FR. The comparative assessment of the two techniques is made through spatial modelling of GIS vector data using the ArcGIS software. Two different Landslide Information Values were computed for each polygon element of the study area employing the two FR techniques that categorized the study area into five classes of vulnerability using natural breaks (Jenks) technique. Subsequently, vulnerability zonation maps were prepared showing the different levels of landslide vulnerability. The LR technique yielded significantly higher vulnerability assessment accuracy (77%) as compared to the standard FR (71%).  相似文献   

16.
Geospatial database creation for landslide susceptibility mapping is often an almost inhibitive activity. This has been the reason that for quite some time landslide susceptibility analysis was modelled on the basis of spatially related factors. This paper presents the use of frequency ratio, fuzzy logic and multivariate regression models for landslide susceptibility mapping on Cameron catchment area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. Landslide locations were identified in the study area from the interpretation of aerial photographs, high resolution satellite images, inventory reports and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing tools. There were nine factors considered for landslide susceptibility mapping and the frequency ratio coefficient for each factor was computed. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land cover from TM satellite image; the vegetation index value from Landsat satellite images; and precipitation distribution from meteorological data. Using these factors the fuzzy membership values were calculated. Then fuzzy operators were applied to the fuzzy membership values for landslide susceptibility mapping. Further, multivariate logistic regression model was applied for the landslide susceptibility. Finally, the results of the analyses were verified using the landslide location data and compared with the frequency ratio, fuzzy logic and multivariate logistic regression models. The validation results showed that the frequency ratio model (accuracy is 89%) is better in prediction than fuzzy logic (accuracy is 84%) and logistic regression (accuracy is 85%) models. Results show that, among the fuzzy operators, in the case with “gamma” operator (λ = 0.9) showed the best accuracy (84%) while the case with “or” operator showed the worst accuracy (69%).  相似文献   

17.
王璇  师芸  陈浩 《测绘通报》2022,(11):112-117
为对自然灾害频发的西北地区进行地质灾害易发性研究,本文考虑了高程、坡向等10类因素,利用确定性系数(CF)模型和确定性系数耦合逻辑回归(CF-LR)模型对城固县地质灾害易发性进行评价。结果表明,CF模型和CF-LR模型的灾害比均呈递增状态,高、极高灾害点密度分别为4.75、5.97个/km2,且两种模型的测试集受试者工作特征(ROC)曲线下面积(AUC)分别为0.812、0.835,验证集ROC和AUC值分别为0.862、0.891。两种模型均能有效评价区域内地质灾害易发性,且CF-LR模型具有更高的评价精度。  相似文献   

18.
The purpose of this study was to investigate and compare the capabilities of four machine learning methods namely LogitBoost Ensemble (LBE), Fisher’s Linear Discriminate Analysis (FLDA), Logistic Regression (LR) and Support Vector Machines (SVM) to select the best method for landslide susceptibility mapping. A part of landslide prone area of Tehri Garhwal district of Uttarakhand state, India, was selected as a case study. Validation of models was carried out using statistical analysis, the chi square test and the Receiver Operating Characteristic (ROC) curve. Result analysis shows that the LBE has the highest prediction ability (AUC = 0.972) for landslide susceptibility mapping, followed by the SVM (0.945), the LR (0.873) and the FLDA (0.870), respectively. Therefore, the LBE is the best and a promising method in comparison to other three models for landslide susceptibility mapping.  相似文献   

19.
A GIS-based statistical methodology for landslide susceptibility zonation is described and its application to a study area in the Western Ghats of Kerala (India) is presented. The study area was approximately 218.44 km2 and 129 landslides were identified in this area. The environmental attributes used for the landslide susceptibility analysis include geomorphology, slope, aspect, slope length, plan curvature, profile curvature, elevation, drainage density, distance from drainages, lineament density, distance from lineaments and land use. The quantitative relationship between landslides and factors affecting landslides are established by the data driven-Information Value (InfoVal) — method. By applying and integrating the InfoVal weights using ArcGIS software, a continuous scale of numerical indices (susceptibility index) is obtained with which the study area is divided into five classes of landslide susceptibility. In order to validate the results of the susceptibility analysis, a success rate curve was prepared. The map obtained shows that a great majority of the landslides (74.42%) identified in the field were located in susceptible and highly susceptible zones (27.29%). The area ratio calculated by the area under curve (AUC) method shows a prediction accuracy of 80.45%. The area having a high scale of susceptibility lies on side slope plateaus and denudational hills with high slopes where drainage density is relatively low and terrain modification is relatively intense.  相似文献   

20.
Abstract

The main objective of this study is to assess the relative contribution of the state-of-the-art topo-hydrological factor, known as height above the nearest drainage (HAND), to landslide susceptibility modellling using three novel statistical models: weights-of-evidence (WofE), index of entropy and certainty factor. In total, 12 landslide conditioning factors that affect the landslide incidence were used as input to the models in the Ziarat Watershed, Golestan Province, Iran. Landslide inventory was randomly divided into a ratio of 70:30 for training and validating the results of the models. The optimum combination of conditioning factors was identified using the principal components analysis (PCA) method. The results demonstrated that HAND is the defining factor among hydrological and topographical factors in the study area. Additionally, the WofE model had the highest prediction capability (AUPRC = 74.31%). Therefore, HAND was found to be a promising factor for landslide susceptibility mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号