共查询到20条相似文献,搜索用时 15 毫秒
1.
复合加载下桶形基础循环承载性能数值分析 总被引:1,自引:0,他引:1
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。 相似文献
2.
近海海床表层多为软黏土或淤泥质土,为探究海床表层软土对海上风电宽浅式筒型基础承载特性的影响,以中国广东某海域风电场为背景,通过有限元分析的方法,研究竖向、水平、弯矩荷载作用下软土层厚度和土体强度对基础极限承载力、破坏模式以及筒基土压力分布的影响。研究结果表明:当软土层厚度小于H/2(H为筒裙高度)时,单向荷载作用下宽浅式筒型基础极限承载力随软土层厚度的增加呈线性减小的趋势;当软土层厚度大于H/2后,承载力降低速率逐渐增大。表层软土的存在,使得塑性区范围缩小,软土层内土体塑性破坏更加明显。竖向荷载作用下,随软土层厚度的增大,筒顶承载先减小后增大,筒内侧摩阻力先增大后减小;水平荷载和弯矩作用下,筒侧被动土压力的降低是引起软土覆盖地基中基础承载能力降低的主要因素。 相似文献
3.
基于验证的三维有限元方法,考察了斜壁桶形基础的承载特性,得到了变形网格、位移增量分布、位移等值面分布等结果,探讨了斜壁倾角与各极限承载力之间的定量关系。计算表明,桶形基础发生竖向位移时,主要是桶体内部和桶基正下方的土体发生沉降,而桶侧的土体基本不发生沉降。桶形基础受到水平荷载发生转动时,转动中心轴大致位于桶基底面内,桶基水平承载力主要由桶内土体和桶基外侧中上部受压侧土体产生的抵抗反力构成。桶基因受到较大竖直向上荷载而失效时,桶内土体和桶基外侧靠近海床面附近土体产生了较大的向上位移。桶壁倾角β每增加1°,竖向抗压极限承载力、竖向抗拔极限承载力、水平极限承载力分别提高12%、17.4%及3.8%。 相似文献
4.
AbstractComposite bucket foundation (CBF) is a wide-shallow foundation for offshore wind turbines, which can be transported and installed with the turbine as one unit at a one-step operation. Compared with deep pile foundations, its structural stability is more sensitive to the scouring by waves and currents. In this paper, a three-dimensional finite element model with CBF and surrounding soil is established to estimate the failure mode at different given soil scour conditions. The loading on CBF for offshore wind turbines is characterized by relatively small vertical loading V, larger horizontal loading H, and bending moment M, and the effect of erosion on bearing capacity of CBF is determined by using the fixed displacement ratio method. In addition, the failure envelopes of the CBF applied in H–M and V–H–M loading modes are obtained. Results indicate that the bearing capacity of CBF under horizontal loading and bending moment will be significantly reduced by the decrease in the embedded depth of CBF due to the scouring depth and extent, as well as the H–M, and V–H–M failure envelopes. The structural stability safety factor of CBF under different scouring conditions can be obtained through the three-dimensional envelope surface with respect to scouring depth and extent. 相似文献
5.
The experimental investigation of the response of suction bucket foundation in fine sand layer under horizontal dynamic loading has been carried out. The developments of settlement and excess pore pressure of sand foundation have been mainly studied. It is shown that the sand surrounding the bucket softens or even liquefies at the first stage if the loading amplitude is over a critical value, at later stage, the bucket settles and the sand layer consolidates gradually. With the solidification of the liquefied sand layer and the settlement of the bucket, the movement of the sand layer and the bucket reach a stable state. 相似文献
6.
7.
Suction caissons are considered as an alternative foundation solution for offshore wind turbines. In the present study, three-dimensional finite element (FE) analyses are performed to assess the behavior of a bucket foundation and soil supporting the bucket under cyclic and monotonic loading conditions. A parametric study is also performed for a wide range of bucket geometries and two different soil densities. The results indicate that bucket geometry and soil properties significantly affect the foundation response due to cyclic loading conditions. The bucket with the smallest geometry installed in medium dense soil exhibits the lowest stiffness in initial loading and then with the progress of cyclic loads experiences lower stiffness compared to the caissons with larger geometries. The sensitivity of the foundation response to the soil density is higher than its geometry. The bucket under the lowest vertical load experiences the lowest stiffness in both virgin loading and during the progress of cyclic loads. The highest soil displacement is observed near the lid at the interior of the bucket. Stresses caused by cyclic loading belong to certain ranges. Additionally, increases in the skirt length result in increases in the stress ranges and shift the range to the right side. With respect to the monotonic loading conditions, normalized diagrams are proposed that can be used for the preliminary design of suction bucket foundations. 相似文献
8.
Xuguang Chen Tao Liu Yuke Jiang Hongjun Liu Hailei Kou Jianpeng Xu 《Marine Georesources & Geotechnology》2018,36(7):749-758
Suction bucket foundation is a typical type for offshore turbines. Scour caused by wave and current can reduce the stability of foundation and then endanger the whole structure. This paper details a series of suction bucket model tests performed in sand under wave cyclic loading. The model tests investigate the effect of scour on stability of bucket foundation by artificially excavated scour hole around the foundation. It is revealed that the behavior of foundation bearing capacity can be divided into two stages: the initial cyclic stage and the final stage (showing either cyclic stability or cyclic failure). When the wave circulation is stable, the sand on the front and back sides of the foundation is suspected to be liquefied. With the increase in scour depth, the stability of foundation is gradually reduced, the behavior of foundation gradually changes from a state of cyclic stability to cyclic failure, and the number of waves that can be withstood is drastically reduced. Finally, the height of the center of rotation of the suction bucket was observed to descend with the increase in scour depth. 相似文献
9.
The response of bucket foundations on sand subjected to planar monotonic and cyclic loading is investigated in the paper. Thirteen monotonic and cyclic laboratory tests on a skirted footing model having a 0.3 m diameter and embedment ratio equal to 1 are presented. The loading regime reproduces the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model, suitably modified to accommodate the footing embedment and the application of cyclic load. Details of the proposed model are provided together with evidences of its ability to reproduce the essential features of the experimentally observed behaviour. The results of the study aim at increasing the confidence in the use of the macro-element approach to predict the response of bucket foundations for offshore wind turbines, notably as the long-term accumulated displacements are concerned. 相似文献
10.
针对海上风电负压桶型基础,以提高桶基水平承载性能和降低结构动力响应为目的,提出了一种加装稳定翼的负压桶型基础型式。通过在桶身设置一组稳定翼,使得桶周土抗力得以充分利用。以单立柱负压桶基为例,建立桶土全实体有限元模型,进行了静力分析和包括模态分析、瞬态分析、谱分析在内的动力分析。结果表明:稳定翼的设置增强了桶基水平承载性能;水平位移和动力响应显著减小;结构低阶固有频率略有提高。 相似文献
11.
以一6.7 MW风机为研究对象,提出了一种适用于30~50 m水深的海上风电倒Y形导管架筒型基础结构型式,采用三维精细有限元模型对结构的受力特性展开研究,包括结构的自振特性以及在随机风浪流荷载作用下的动力响应。研究结果表明,倒Y形导管架筒型基础采用“三腿变六腿”导管架的结构型式,能够更加有效的将上部荷载传递至下部筒型基础,具有较好的受力特性和传力体系;整机结构的前两阶自振频率均在风机允许运行的频率范围内;在50年一遇极端随机风浪流荷载作用下,整机结构的位移响应和应力响应,均可满足结构安全使用要求。 相似文献
12.
13.
在一个大型土池中进行了软土中组合四桶基础在竖向静荷载与水平循环荷载共同作用下的承载力模型试验,研究了竖向静荷载与水平循环荷载对组合桶形基础破坏形式与承载力的影响。试验结果表明,组合四桶基础的变形主要包括水平循环变形与竖向循环累积沉降。基础的破坏形式取决于水平循环荷载与竖向静荷载。若竖向静荷载较小,过大的水平循环位移将导致基础破坏;随竖向静荷载增加,竖向循环累积沉降将变为导致基础破坏的主要原因。试验结果还表明,在不同竖向静荷载与水平循环荷载共同作用下,基础的水平循环承载力大约为水平静承载力的70%左右。 相似文献
14.
15.
采用实验和数值模拟方法研究了一种新型海洋平台管节点在地震载荷下的响应和破坏情况。采用拟静态循环加载模拟地震载荷 ,对真实尺寸的试件进行实验 ,研究局部屈曲和裂纹等对管接点抗震性能的影响。能量分析表明 ,发生在斜支管中的局部屈曲消耗了大部分输入能量。与现在使用的N型管节点相比 ,该新型管节点有较好的抗震性能。采用有限元数值模拟方法分析比较了不同尺寸配置下 ,该型管节点的响应曲线 相似文献
16.
The central Alborz mountain range, located in northern Iran, neighboring the Caspian Sea and where the two Persia and Eurasia plates meet, is known as a seismologically active area. In this regard, investigation of the behavior of saturated sand deposits located in this area may be of particular interest. Saturated sand deposits are subjected to instabilities owing to liquefaction or volume change due to earthquake shakings. A particular type of saturated sand deposits is Anzali sand which is abundant in Anzali port and other cities located in this area in northern Iran. This type of sand is a representative for most sands found in this area, i.e., the southern coastal line of Caspian Sea. This research is solely focused on the volume change behavior of marine deposits of Anzali area, often characterized as Anzali sand, in terms of the settlement of a model footing located on the surface of the sand by the aid of a transparent laminar shear box apparatus. Effects of a number of factors such as the frequency of the cyclic loading, the initial density of the sand, and the sample preparation method have been investigated. Observations indicated that the density index and the frequency of loading which are proportional to the energy of an earthquake have direct effects on the accumulation and amount of the final settlement of Anzali sand. 相似文献
17.
Huayang Lei Jingjin Liu Min Liu Zhipeng Zhang Mingjing Jiang 《Marine Georesources & Geotechnology》2017,35(2):281-291
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency. 相似文献
18.
通过对7个不同材料及大小的模型桶基在粉土中的负压沉贯实验过程中的沉贯速度、沉贯负压、桶内表层土中产生的渗流梯度和桶内土塞率的大小的比较,揭示了比尺不同的桶基对贯入过程的影响,为桶基设计和施工提供依据。 相似文献
19.
文中主要采用小比尺模型试验,研究了台风对海上风电单桩基础累积变形的影响。通过在模型槽中进行桩的水平静力和循环加载试验,得到了不同工况下桩的累积转角与循环加载次数之间的关系曲线。随后对曲线进行分析,拟合出无台风工况下累积转角的计算公式,然后运用叠加法,得出了有台风工况下累积转角的计算公式。试验结果表明,单独作用一种循环荷载时,桩的累积转角是循环次数的幂函数。台风引起的大幅值循环荷载会导致转角的陡升,且增加幅度与小幅值循环荷载的幅值负相关。当将台风荷载设置在加载过程的开头时,对于疲劳设计工况,台风荷载产生的累积转角占总的累积转角的99%以上,因而可以忽略小幅值循环荷载产生的累积转角,直接用台风荷载产生的累积转角代表桩的长期累积转角,实现简化设计。 相似文献
20.
以广东省某海域海上风电项目为背景,针对六边形钢混组合筒型基础海上建造过程中敞口筒裙无法自浮移位及基础整体起浮稳性不足的问题,提出了一种基于助浮浮箱提高基础移位及起浮稳性的技术,并分别基于SESAM和ABAQUS软件进行了整体浮稳性分析与结构强度校核。计算结果表明:在浮箱助浮作用下,可将基础满足稳性要求的吃水深度从13 m减小至8 m,极大地降低了对基础制造海域水深的要求;敞口筒裙—浮箱移位及筒型基础—浮箱起浮过程中,其整体垂荡与纵摇固有周期均随吃水深度的增加而增大,且两种结构分别在7 m和8 m吃水深度下的运动响应最优;移位及起浮过程中,浮箱与基础结构的应力均满足结构强度要求。此项技术的研究及在广东省某海域的成功应用,为推动在更多的浅海区域预制大型筒型基础结构提供了可借鉴的技术。 相似文献