首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study focuses on the shear strength, deformation, and particle crushing of sand which is mixed by crushed sandstone and mudstone particles. Two triaxial tests—one for unsaturated specimens and the other for saturated specimens—were performed, along with sieve analysis tests. Results obtained from the triaxial tests indicate that, with the increment of the mudstone particle content by weight, the angle of internal friction decreases, the cohesion increases and then decreases, and both the initial angle of shearing resistance at the atmospheric pressure and decremental angle increase and then decrease. Compared to the unsaturated specimens, the deviator stress or normalized deviator stress of the saturated specimens at the same axial stress may decrease due to the wetting action. Thus, the shear strength of the tested materials may be reduced by the wetting action. Results of sieve analysis tests indicate that the mixing of some mudstone particles into the sandstone particle mixture may reduce the amount of particle crushing, but the wetting action may increase the amount. The amount of the crushed particle may arrive at a minimum of 40% of mudstone particle content by weight.  相似文献   

2.
This study focuses on the evaluation on deformation induced by periodic saturation of a sandstone–mudstone particle mixture. Two types of triaxial tests, without and with periodic saturation, were performed. The strain–stress relationships from the two types of tests indicate that the periodic saturation may induce an increment of axial strain (Δε), and the Δε values are related to the ratio of confining to atmospheric pressure (σ3/pa), stress level for periodic saturation (L), and number of periodic saturation or cycles (N). The values of Δε are increasing along logarithmic curves with increment of N value from 1 to 20, and increase along straight lines with increasing L value from 0.18 to 0.82 or σ3/pa value from 1 to 4. Based on the analyses of experimental data, a logarithmic fitting equation, which is a function of N, L, and σ3/pa, is suggested to predict the Δε value. And based on the fitting equation and simple analyses on stress state, another equation, which may be used to estimate the settlement induced by periodic saturation of a large-area foundation filled using the sandstone–mudstone particle mixture, is also suggested.  相似文献   

3.
To investigate cyclic deformation behavior of natural soft marine clay-involved principal stress rotation, a series of undrained tests were conducted by using GDS hollow cylinder apparatus. The principal stress rotates 5000 cycles while the deviator stress was kept at a constant level. The tests results show that the deformation behavior of the tested samples are significantly dependent on cyclic stress ratio (CSR). Furthermore, different type of generation of axial strains occur under different CSRs. With the same CSR, the type of axial strain is different between that considering and ignoring principal stress rotation. When CSR is larger than CSR = 0.42 under principal stress rotation, the axial strain grows rapidly after a few cycles. Compared with the results conducted by cyclic triaxial results, the effect of principal stress rotation on the axial strain is significant.  相似文献   

4.
A triaxial system is designed with a temperature range from-20 ℃ to 25 ℃ and a pressure range from 0 MPa to 30 MPa in order to improve the understanding of the mechanical properties of gas hydrate-bearing sediments.The mechanical properties of synthetic gas hydrate-bearing sediments (gas hydrate-kaolin clay mixture) were measured by using current experimental apparatus.The results indicate that:(1) the failure strength of gas hydrate-bearing sediments strongly depends on the temperature.The sediment’s strength increases with the decreases of temperature.(2) The maximum deviator stress increases linearly with the confining pressure at a low-pressure stage.However,it fluctuates at a high-pressure stage.(3) Maximum deviator stress increases with increasing strain rate,whereas the strain-stress curve has no tremendous change until the axial strain reaches approximately 0.5%.(4) The internal friction angles of gas hydrate-bearing sediments are not sensitive to kaolin volume ratio.The cohesion shows a high kaolin volume ratio dependency.  相似文献   

5.
While a crushed sandstone particle mixture, usually used as an engineering fill, is filled along bank of or in a large reservoir, it is subjected to periodic saturation induced by filling-drawdown cycles of reservoir water. The periodic saturation may induce post-construction settlement, and reduce stability of the filled body. In order to evaluate the effects of periodic saturation on stress–strain relationship of the mixture, several triaxial tests are carried out. According to experimental data, the periodic saturation may induce an increment of axial strain (Δε; <0.226%), a decrement of crest of deviator stress (Δ(σ1?σ3)f; <0.192?MPa) and a decrement of angle of shearing resistance (Δφ; <3.70°). With increment of the number of periodic saturation cycles, the variations of the three parameters may be fitted by logarithmic curves. And with increase in the stress level for periodic saturation, the variations of the three parameters may be fitted by straight lines. Three fitting equations to predict the three parameters’ values, and an equation to calculate the settlement induced by the periodic saturation of a large-area filled foundation, are suggested.  相似文献   

6.
From this research, overconsolidated undrained and drained behaviors of specimens with high sand content were highly dilatant. According to the comparison results of laboratory tests, the deviator stresses of silty sand were greater than sandy silt due to high sand content under increasing OCRs, and both silty sand and sandy silt were presented strain softening tendency after failure under undrained loading. The pore water pressure increased with increasing fines content under increasing OCRs. Silty sand exhibited more dilatancy and increasing shear strength than sandy silt because pore water pressures of silty sand were lower than sandy silt under higher OCRs. In overconsolidated drained tests, silty sand is higher strength than sandy silt because silty sand has a lower volumetric strain and higher deviator stress than sandy silt under increasing OCRs. As the degree of overconsolidation increased, similar behaviors of silty sand and sandy silt observed that volumetric strain decreased to negative values due to dilatancy effect and low-cohesion under current effective confining pressures.  相似文献   

7.
Abstract

In this article, the dilatancy of calcareous soil is studied systematically based on triaxial consolidation drainage shear tests, and the difference in dilatancy between calcareous soil and siliceous soil is also investigated. It was found that: ① Calcareous soil experience obvious dilated deformation. Dilatancy tendency increases with increasing related density and decreases with increasing confining pressure. ② The volumetric strain rate initially increases from negative to positive. After it reaches a maximum, there is a small decrease in the volumetric strain rate, but it is still greater than zero, and the stress-strain curves are of softening type. ③ For the same condition, the dilatancy deformation of calcareous sand begins later than that of siliceous sand, and the volume compression before dilatancy is also larger for calcareous sand. ④ The critical state alone cannot accurately describe the entire deformation process of soil, and it is proposed that the phase transformation state be added to the standard method used to assess soil dilatation and contraction. ⑤ Based on the statistical analysis of experimental data, mathematical relationships were established between void ratio, relative density, and effective confining pressure of phase transformation state and critical state, respectively.
  • Highlights
  • Reports results from a well-designed experiment that includes a good amount of samples and data.

  • Effects of relative density and effective confining pressure on deformation mode and mechanical properties of calcareous sand are evaluated.

  • The difference in dilatancy between calcareous sand and siliceous sand was compared

  • The phase-transformation state and critical state were compared with the axial strain, volumetric strain and deviatoric stress.

  • Using phase-transformation void ratio and critical void ratio to describe the whole deformation process of calcareous sand is proposed.

  • The mathematical expressions of phase-transformation void ratio and critical void ration were given, respectively.

  相似文献   

8.
1 .Introduction1ThispaperwasfinanciallysupportedbytheNationalNaturalScienceFoundationofChina (GrantNo .5 980 90 0 4 ) . Correspondingauthor.E mail:hliu @jlonline .com  Largegrounddeformationinducedbyliquefactionduetocyclicloading ,suchasearthquakesorseawaveloading ,ca…  相似文献   

9.
ABSTRACT

One-way cyclic loading is more typical for traffic loading and cyclic triaxial test has been recognized as a useful method for solving many engineering problems. Under traffic loading, the influence of variable confining pressure on cyclic behavior of natural organic clay subjected to cyclic traffic loading is rarely reported in the literature. In this study, a laboratory investigation on undrained cyclic behavior of natural organic clay is presented and conducted by cyclic triaxial apparatus. Tests are conducted by both constant confining pressure and variable confining pressure, to simulate the loading conditions induced by passing vehicles in actual engineering. Different stress levels are also considered in this study. By comparing between the results of constant confining pressure tests and variable confining pressure tests, it shows that the one-way cyclic behavior of organic clay is influenced significantly by variation of confining pressure, in terms of pore water pressure, permanent axial strain and stress–strain hysteretic loops.  相似文献   

10.
The behaviors of granular material and influencing factors under complex dynamic loading are studied by more and more researchers with particle flow method. Only the strain-controlled loading has been generally used in the current study, although this method was not consistent with the practice of engineering in many situations. In this article, stress-controlled dynamic simulation tests were carried out with particle flow method, which were used to study the collapse characteristics of silt under mutation of principal stress orientation. The tests were performed by PFC2D. The simulation results and the laboratory real tests’ results had a high degree of similarity, particularly in the collapse strain and vibration times. It was very useful to forecast the silt's critical failure state. Based on the verification data, the effects of confining pressure and cyclic shear stress ratio on the collapse characteristics of silt were studied further. With the increase of cyclic shear stress ratio, the deviator strain amplitude increased and the required vibration times gradually reduced to achieve the same strain level. Under the same dynamic shear stress ratio and vibration times, the initial dynamic elastic modulus slightly increased with the increase of initial confining pressure, and the variation range of final collapse deviator strain was small. In the analysis of micro-structural evolution, the redistribution of internal stress of sample was revealed during cyclic loading. With the increase of vibration times, the development of distribution gradually stabilized, and then the high shear stress appeared in some connected regions. On that stage, the particle system developed to instability and failure. The PFC simulation results confirmed that the collapse state was the critical stage to trigger the liquefaction of silt.  相似文献   

11.
The post-cyclic behavior of biogenic carbonate sand was evaluated using cyclic triaxial testing through a stress control method under different confining pressures between 50 to 600 kPa. The testing program included a series of isotropically and anisotropically consolidated, undrained triaxial compression and extension tests on samples of remolded calcareous Bushehr sand. Grading analyses (before and after each test) were used to examine the influence of particle breakage on post-cyclic behavior of Bushehr sand. The particle breakage commonly occurred in these soils even in lower values of confining pressure, yet there was not a clear correlation between the post-cyclic responses and particle breakage. Based on the present study, a concept is suggested for post-cyclic behavior of carbonate sand. It was observed that post-cyclic strength has a good correlation with cyclic stress ratio, type of consolidation, and value of residual cyclic strain. For all specimens, it is clear that the post-cyclic strength is greater than monotonic strength, irrespective of confining pressure and relative density.  相似文献   

12.
Abstract

Fluctuant marine and reservoir water levels are the main failure-inducing factors for embankment slopes. The soft embankment rocks, e.g., red-bed mudstone, eroded by the reservoir water level in the Three Gorges Reservoir area greatly influence the stability of the embankment slopes. In this study, unified strength theory was innovatively applied for damage evaluation and combined with the Weibull distribution to obtain the strength statistics of micro units. Additionally, one damage constitutive model and one damage evolution model considering the initial damage, strain softening and damage weakening were proposed. Then, a series of tests, e.g., modified cyclic wetting and drying test, triaxial compression test and modified numerical simulation test for reservoir embankment red-bed mudstone, were conducted to verify the feasibility of the proposed models. In addition, grey system theory was originally used to evaluate the effects of the Weibull distribution parameters (m and w) and the confining stress on the peak stress. Finally, the proposed model was tentatively applied to the modification of the limit failure height model of the bedded rock slopes. The verification implies that the proposed model results are consistent with the testing results, especially in the simulation of compaction, elastic deformation and strain softening and in the prediction of peak strength. The results from grey system theory analysis indicate that the micro unit strength parameter (w) has the most obvious effect on the strength. Moreover, the modified method based on the damage evolution model for calculating the limit failure height of the bedded rock slopes is conservative.  相似文献   

13.
To reveal the influence of material composition on mechanical properties of light-weight soil, stress-strain -volumetric strain characteristics and Poisson's ratio of mixed soil were researched by consolidated drained shear tests. The results show that light-weight soil is a kind of structural soil, so its mechanical properties are affected by mixed ratio and confining pressure, and mixed soil possesses structural yield stress. When confining pressure is less than the structural yield stress, strain softening occurs; when confining pressure is more than the structural yield stress, strain hardening is observed. There are two kinds of volume change behavior: shear contraction and shear dilatancy. Shear dilatancy usually leads to strain softening, but there isn't an assured causal relationship between them. Poisson's ratio of mixed soil is a variational state parameter with the change of stress state, it decreases with increased confining pressure, and it increases with increased stress level. When axial strain is near 5%, Poisson’ ratio is gradually close to a steady value. The main range of Poisson's ratio is 0.25~0.50 when confining pressure changes from 50 to 300 kPa. When unconfined compressive strength of mixed soil is less than 328 kPa, its stress-strain-volumetric strain characteristics can be predicted very well by Duncan-Chang model (E-B model). However, when the range of unconfined compressive strength is [328 kPa, 566 kPa], the model can't predict stress-strain characteristics accurately when confining pressure is under 200 kPa, and it also can't predict the strong shear dilatancy phenomenon of mixed soil under low confining pressure.  相似文献   

14.
利用高压低温三轴仪对含水合物粉细砂进行剪切试验。分别用气饱和法与水饱和法制样,实现不同水合物饱和度和围压条件的三轴剪切,并分析含水合物砂的胶结作用对剪切特性的影响。试验结果表明:低饱和度时,气饱和与水饱和试样的偏应力差别不大;高饱和度时,制样方式对偏应力的影响较显著;水饱和试样的剪胀性大于气饱和试样,剪胀性随饱和度的升高和围压的降低而增大。峰值偏应力和稳态偏应力由黏聚力和摩擦力两部分组成,水合物的存在对稳态内摩擦角影响不大。  相似文献   

15.
This article presents results from a series of Ko-consolidated compression and extension triaxial tests on specimens from undisturbed samples of Hong Kong Marine Deposits (HKMD). To investigate the strain-rate effects, a total of seven Ko-consolidated triaxial tests were conducted including four compression tests and three extension tests. After Ko-consolidation, the triaxial test specimens were sheared at step-changed axial strain rates under three different confining pressures of 50 kPa, 150 kPa, and 400 kPa, respectively. The step-changed strain rates were applied in the following order: +2%/h, +0.2%/h, +20%/h, -2%/h (unloading) and +2%/h (reloading) for the four compression tests and -2%/h, -0.2%/h, -20%/h, +2%/h (unloading) and -2%/h (reloading) for the three extension tests. The results are reported and analyzed in the paper. The results show that the strain rate effects, the stress-strain characteristics, and the effective stress paths of the specimens for tests in a compression state are different from those for tests in an extension stage. One order of magnitude increase in axial strain rate causes an average 8.6% increase in undrained shear strength for compression tests and a 12.1% increase for extension tests. It is also found that the failure mode of the specimens in compression is different from that in extension. The stress-strain behavior of specimens shows strain-softening and a clear shear band in compression tests, but strain-hardening without any clear shear band in extension tests for the same absolute value of axial strain.  相似文献   

16.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

17.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

18.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

19.
A series of tests were conducted in order to investigate the shear strength and deformation behavior of methane hydrate-bearing sediments during dissociation using the thermal recovery method or depressurization method. An innovative temperature-controlled high pressure triaxial apparatus which can reproduce the in situ conditions of hydrate reservoirs was used. The results indicate that: (1) the failure strength of isotropically consolidated methane hydrate-bearing sediments which dissociated completely using the thermal recovery method is less than that of pure Toyoura sand. However, the initial stiffness and volumetric strain are higher than that of pure Toyoura sand. (2) The thermal recovery method will cause the failure of methane hydrate-bearing sediments when the axial load is higher than the strength of methane hydrate-bearing sediments after dissociation. (3) The depressurization method will not cause collapse of methane hydrate-bearing sediments during depressurization. However, water pressure recovery will lead to failure when the axial load is larger than the strength of the methane hydrate-bearing sediments after dissociation. (4) The depressurization rate shows little effect on the ultimate deformation of methane hydrate-bearing sediments, while the initial deformation rate increases with increasing depressurization rate. (5) The larger the reduction of pore pressure, the larger axial strain and volumetric strain.  相似文献   

20.
循环应力下饱和黏土剪切变形特性试验研究   总被引:3,自引:0,他引:3  
针对饱和重塑黏土,利用土工静力-动力液压三轴-扭转多功能剪切仪,在不固结不排水(UU)条件下进行了应力控制式循环扭剪和竖向-扭转耦合试验,通过对试验结果的对比分析探讨了初始预剪应力和应力反向对应力-应变关系特性的影响,并阐述了不同加荷模式下孔隙水压力发展特性。以此为基础,综合考虑剪切变形和正向偏差变形的共同效应,同时为了能够反映平均残余变形和循环变形的影响,建议了一个综合应变破坏标准的算式。进而通过利用试验数据与目前常用的应变标准比较,表明这种破坏标准具有普遍适用性和较好的稳定性,适用于判定各种应力条件下黏土试样破坏及其强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号