首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study area is characterized by low and fluctuating rainfall pattern, thin soil cover, predominantly rain-fed farming with low productivity coupled with intensive mining activities, urbanization, deforestation, wastelands and unwise utilization of natural resources causing human induced environmental degradation and ecological imbalances, that warrant sustainable development and optimum management of land resources. Spatial information related to existing geology, land use/land cover, physiography, slope and soils has been derived through remote sensing, collateral data and field survey and used as inputs in a widely used erosion model (Universal Soil Loss Equation) in India to compute soil loss (t/ha/yr) in GIS. The study area has been delineated into very slight (<5 t/ha/yr), slight (5–10 t/ha/yr), moderate (10–15 t/ha/yr), moderately severe (15–20 t/ha/yr), severe (20–40 t/ha/yr) and very severe (>40 t/ha/yr) soil erosion classes. The study indicate that 45.4 thousand ha. (13.7% of TGA) is under moderate, moderately severe, severe and very severe soil erosion categories. The physiographic unit wise analysis of soil loss in different landscapes have indicated the sensitive areas, that has helped to prioritize development and management plans for soil and water conservation measures and suitable interventions like afforestation, agro-forestry, agri-horticulture, silvipasture systems which will result in the improvement of productivity of these lands, protect the environment from further degradation and for the ecological sustenance.  相似文献   

2.
The current study was taken up to investigate the utility of remote sensing and GIS tools for evaluation of Integrated Wasteland Development Programme (IWDP) implemented during 1997–2001 in Katangidda Nala watershed, Chincholi taluk, Gulbarga district, Karnataka. The study was carried out using IRS 1C, LISS III data of December 11, 1997 (pre-treatment) and November 15, 2002 (post-treatment) covering the watershed to assess the changes in land use / land cover and biomass that have changed over a period of five years (1997–2002). The images were classified into different land use/land cover categories using supervised classification by maximum likelihood algorithm. They were also classified into different biomass levels using Normalized Difference Vegetation Index (NDVI) approach. The results indicated that the area under agriculture crops and forest land were increased by 671 ha (5.7%) and 1,414 ha (11.94%) respectively. This is due to the fact that parts of wastelands and fallow lands were brought into cultivation. This increase in the area may be attributed to better utilization of surface and ground waters, adoption of soil and water conservation practices and changes in cropping pattern. The area under waste lands and fallow lands decreased by 1,667 ha (14.07%) and 467 ha (3.94%), respectively. The vegetation vigour of the area was classified into three classes using NDVI. Substantial increase in the area under high and low biomass levels was observed (502 ha and 19 ha respectively). The benefit-cost analysis indicates that the use of remote sensing and GIS was 2.2 times cheaper than the conventional methods. Thus, the repetitive coverage of the satellite data provides an excellent opportunity to monitor the land resources and evaluate the land cover changes through comparison of images for the watershed at different periods.  相似文献   

3.
To understand the nature of land degradation and factors responsible for it, investigations were carried out in Etah district with an area of 4.45 lakh hectares. For identification of soil/land degradation problems, multidate Landsat, TM spectral bands and FCC were used. It is observed that salt-affected soils are sharply depicted by light and dark gray mixed tone on band 3, while they are not clear on band 4. Flood plain and waterlogged soils are clearly observed on band 4. Band 6 (10.3 – 12.5 µm) helps in separation of broad zones of coarse and fine-textured soils, active flood plain of rivers, and eroded and gullied lands. The confusion between coarse-textured droughty soils and salt-affected areas in TM FCC (2, 3, 4) could be eliminated by use of band-6 data in combination with FCC. For delineation of problematic areas, two approaches were followed viz. (i) physiographic approach, and (ii) direct approach. In the physiographic approach landscape map associated with image characteristics was prepared. Further the image interpretation units were interpreted for land degradation hazards. With this approach physiography and soil relationship and the degradation problems vis-a-vis soil units could be established and ameliorative measures as per soil condition can be suggested. In direct approach, the problematic areas as per predetermined key were demarcated. Out of 4.45 lakh ha of the area, 1.99 lakh ha is affected by various soil degradation problems, like droughty soils, flooding hazard and salinity and alkalinity which cover 22.1%, 50.0% and 27.9%, respectively. To study the distribution of a salt-affected lands, major physiographic boundaries were superimposed over the land degradation map prepared by direct approach. It is observed that 81.5% of the salt-affected areas lie in the old alluvial plain while 18.5% is in recent flood plain.  相似文献   

4.
Soil erosion is the most important factor in land degradation and influences desertification in semi-arid areas. A comprehensive methodology that integrates revised universal soil loss equation (RUSLE) model and GIS was adopted to determine the soil erosion risk (SER) in semi-arid Aseer region, Saudi Arabia. Geoenvironmental factors viz. rainfall (R), soil erodibility (K), slope (LS), cover management and practice factors were computed to determine their effects on average annual soil loss. The high potential soil erosion, resulting from high denuded slope, devoid of vegetation cover and high intensity rainfall, is located towards the north western part of the study area. The analysis is investigated that the SER over the vegetation cover including dense vegetation, sparse vegetation and bushes increases with the higher altitude and higher slope angle. The erosion maps generated with RUSLE integrated with GIS can serve as effective inputs in deriving strategies for land planning/management in the environmentally sensitive mountainous areas.  相似文献   

5.
In the present study, an attempt has been made to characterize the biophysical land units in Kanholi bara river basin of sub-humid tropical ecosystem of central India using remotely sensed data, field surveys and GIS based multi-criteria overlay analysis. The geo-spatial database on elevation, slope, landforms, soil depth, soil erosion, land use/land cover and hydrogeomorphological parameters has been generated using IRS-ID LISS-III satellite data coupled with soil survey data in GIS. The methodology followed in characterization of biophysical land units in GIS includes assigning scores for different classes of the layers and weighatges for different layers based on their characteristics and degree of influence on desired output. GIS based ‘multi criteria overlay’ analysis reveals seventeen distinct biophysical land units in the river basin. Severe (50.5-59.5) to very severe (59.5) biophysical stress units are found in plateau spurs, isolated mounds, linear ridges, dissected plateau and escarpments. These zones are associated with severe to very severe erosion, steep to very steep, extremely shallow soils, poor to very poor groundwater prospects, wastelands and scrublands. The characterization of biophysical land units helps in analysis of their potentials, problems and stress environment to plan and execute site-specific landscape management practices and maximize the productivity from each biophysical land unit. The present study demonstrates that generation of geo-spatial database based on remotely sensed data and field surveys in GIS and their analysis helps great extent in characterization of biophysical land units and analysis of their stress environment for management.  相似文献   

6.
A study on land degradation in the upper catchment of river Tons, a tributary of Yamuna river, in Uttarkashi district of the Uttarakhand state, was carried out using on-screen visual interpretation of IRS LISS-III + PAN merged data. The study area, which is largely mountainous, includes Govind Wildlife Sanctuary and National Park. Vegetation cover, slope and erosion status were used as criteria for the delineation of four major land degradation categories viz., undegraded, moderately degraded, degraded and severely degraded. More than 50 per cent of the study area is reported to be covered with snow and grassland. The moderate to severely degraded area worked out to be 42.4 per cent of the total area. The 32.8 per cent of area was found to be moderately degraded, followed by degraded (6.63%) and severely degraded (2.88%) areas. The depletion of vegetation cover on mountainous terrain and subsequent cultivation without proper protection measures is the reason for severe soil erosion and land degradation. In view of the existing land degradation situation, the catchment requires immediate treatment on priority for the sustenance of agriculture and wild life. It is expected that these measures will reduce the silt load in the river Tons and eventually, in river Yamuna.  相似文献   

7.
Soil and Soil Conservation surveys for watershed management were conducted using aerial photos of 1:60,000 scale in parts of North Cachar and Karbi-Anglong districts of Assam. The area was divided into different river catchments and sub-watersheds. The erosion, slope, landuse and soils in relation to physiogrphy were studied in each sub-watershed. The different physiographic units identified in the area were high, medium, low and very low hills; pediplains; alluvial plain and the valleys. These units were further subdivided based on slope, landuse and erosion etc. The soils were classified according to Soil Taxonomy. For priority determination, weightage was alloted to each of the sub-watersheds considering their physiography, slope, landuse, erosion,soil texture, depth and delivery ratio and sediment yield was calculated for each subwatershed. It has been found that out of 122875 ha, an area of 1745 ha had very high priority, 30590 ha high, 37290 ha medium, 51957 ha low and 1294 ha very low priority for soil conservation purposes.  相似文献   

8.
A systematic air-photo-interpretation procedure employing physiographic analysis has been used in preparing a quick inventory of the problem areas of parts of Hoshiarpur district of Punjab. The inventory has been prepared in respect of two selected areas viz. Hoshiarpur and Nangal on the basis of the study of photo-mosaic of Hoshiarpur district. The soil conservation needs of the predominant problem land units of both the areas are indicated.  相似文献   

9.
Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.  相似文献   

10.
This study integrates the RUSLE, remote sensing and GIS to assess soil loss and identify sensitive areas to soil erosion in the Nilufer creek watershed in Bursa province, Turkey. The annual average soil loss was generated separately for years 1984 and 2011, in order to expose possible soil loss differences occurred in 27 years. In addition, sediment accumulation and sediment yield of the studied watershed was also predicted and discussed. The results indicated that very severe erosion risk areas in 1984 was 13.4% of the area, but it was increased to 15.3% by the year 2011, which needs immediate attention from soil conservation point of view. Furthermore, the estimated annual sediment yield of the Nilufer creek watershed was increased from 903 to 979 Mg km?2 y?1 in 27 years period. The study also provides useful information for decision-makers and planners to take appropriate land management practices in the area.  相似文献   

11.
Panchromatic vertical aerial photographs in the scale of 1: 15,000 were interpreted for assessment of erosion in the Bcas River Valley Project catchment, Himachal Pradesh in terms of the erosion intensity units. The erosion intensity units imply the relative quantum of sediment yield as deduced from the probable interaction of the significant parameters of erosion comprising physiography, slope, soil characteristics, Vegetation, land use and the visible erosion conditions. The procedure of photo-interpretation as also computation of sediment yield index for each of the different watersheds in the Beas RVP catchment is discussed. The survey revealed that out ofa total of 494 watersheds involving an area of 5.5 lakh ha, 132 watersheds comprising an area of 1.55 lakh ha, have silt yield index of over 1150 and need soil conservation measures on priority basis. Application of photo-interpretation has proved 2 times more efficient than the conventionai method that was followed in a piain area of Matatilla RVP catchment. In a more simpler terrain than Beas catchment and with ideal photographic scale of 1:60,000, the efficiency is expected to increase by 2-3 times than was achieved in Beas RVP catchment  相似文献   

12.
Soil data obtained from soil resource inventory, land and climate were derived from the remote sensing satellite data (Landsat TM, bands 1 to 7) and were integrated in GIS environment to obtain the soil erosion loss using USLE model for the watershed area. The priorities of different sub-watershed areas for soil conservation measures were identified. Land productivity index was also used as a measure for land evaluation. Different soil and land attribute maps were generated in GIS, and R,K,LS,C and P factor maps were derived. By integrating these soil erosion map was generated. The mapping units, found not suitable for agriculture production, were delineated and mapped as non-arable land. The area suitable for agricultural production was carved out for imparting the productivity analysis; the land suitable for raising agricultural crops was delineated into different mapping units as productivity ratings good, fair, moderate and poor. The analysis performed using remote sensing and GIS helped to generate the attribute maps with more accuracy and the ability of integrating these in GIS environment provided the ease to get the required kind of analysis. Conventional methods of land evaluation procedures in terms of either soil erosion or productivity are found not comparable with the out put generated by using remote sensing and GIS as the limitations in generating the attribute maps and their integration. The results obtained in this case study show the use of different kinds of data derived from different sources in land evaluation appraisals.  相似文献   

13.
This study was undertaken to prepare an inventory on soil erosion of a hilly river watershed — the Aglar watershed, part of Tehri Garhwal and Dehradun districts (U.P.), using terrain physiography and soil survey data obtained from interpretation and analysis of Landsat TM FCC (1:62,500 scale) and limited ground investigations. The watershed is divided into four broad physiographic units viz. higher Himalayas (> 2000m elevation); lower Himalayas (< 2000m elevation); river terraces and flood plains. Each physiographic unit has been further divided into subunits on the basis of aspects and landuse. Three major orders of soils viz. Inceptisols, Mollisols and Entisols were found in different physiographic units. Soil, and land properties of soilscape units viz. soil depth, texture, structure, slope, landuse and soil temperature regime were evaluated for soil-erosion hazard. The results indicate that in the whole watershed 19.13%, 45.68%, 26.51% and 7.92% areas have been found to be under none to slight, moderate, severe and very severe soil erosion hazard categories, respectively.  相似文献   

14.
The planning of conservation measures to conserve water and soil resources taking hydrological planning unit as micro-watershed is considered to be effective. The automated watershed delineation technique using the spline interpolated filled digital elevation model (DEM) is effective in converging slopes of the area in which the stream patterns match with the manually digitized stream patterns of the topographical map. The various vector spatial layers like the slope/aspect, land-use/land-cover, runoff potential, soil erosion potential and the associated attribute information governing the criteria for different conservation structures can act as input layers in integrated spatial analysis module in GIS environment to evolve derived layers indicating the locations of conservation sites meeting the requisite criteria. The reliability of suitable conservation sites suggested out of integrated spatial GIS analysis could be ascertained using the multi criteria analysis incorporating the various factors controlling soil erosion process in the micro-watershed groups. The details of the above work are discussed in the paper.  相似文献   

15.
In the present study, efforts have been made to identify and map areas affected by various soil degradation processes in Hanumangarh district of western Rajasthan. Soil degradation processes were identified by using IRS-1B satellite image of the year 1998, SOI toposheets, ground truth verification and soil studies. The kind, extent and degree of soil degradation have been mapped in an area of 9703 km2. The study reveals that the soil degradation problems were mainly due to wind erosion/deposition and water-logging, followed by salinity/alkalinity, water erosion and wind and water erosion combinedly. Nearly 38.7% area is subjected to slight and moderate degradation, which can easily be combated by adopting the suggested techniques and 17.1% area is free of hazard. Soil degradation processes have resulted in the loss of organic carbon, available Phosphorus and Potassium. Soil degradation due to water logging/salinization has also shown a significant increase in electrical conductivity and available potassium content of soil.  相似文献   

16.
In order to check the premature siltation of the reservoirs and guard against the drop in the irrigation potential, the Government of India has launched the schemes of soil conservation and integrated watershed management in the catchments of RVPs and Flood Prone rivers. Owing to the large financial and manpower commitments needed to implement and execute soil conservation measures over vast catchment areas, a priority approach for treatment was identified. The methodology developed for prioritization of watersheds of a catchment area conceptualizes sedimentation of the reservoirs as a multiplicative function of erosivity value and the delivery ratio. This paper deals with the development of a computerized data base software module ‘WEIGHT’ for determination of erosivity values for the mapping units comprising assemblages of the varying combinations of climate, physiography and slope, land use and cover conditions, soil characteristics (texture, solumn thickness, permeability and pH) and the existing erosion and soil conservation measures. The WEIGHT software package is coded in FORTRON-4 for PDP 11/83 operating system. the data base comprises storage of the attributes of the different erosivity determinants of the mapping units with predetermined erosivity values sequentially on a disk and comparing the attributes of a new mapping unit to get the most probabilities erosivity value. The objective has been to eliminate the personal bias and bring about the objectivity in the process of assigning erosivity values to the different mapping units. The data base design, design logic and operational sequence of the data base are discussed in the paper.  相似文献   

17.
In the present study, the rainfall-runoff relationship is determined using USDA Soil Conservation Service (SCS) method. The coefficient of determination (R2) is 0.99, which indicates a high correlation between rainfall and runoff. The runoff potential map was prepared by assigning individual class weight and scores input map. Annual spatial soil loss estimation was computed using Morgan, Morgan and Finney mathematical model in conjunction with remote sensing and GIS techniques. Higher soil erosion was found to occur in the northern part of the Tons watershed. The soil texture in the affected area is coarse loamy to loamy skeletal and soil detachment is higher. Moreover the land use has open forests, which does not reduce the impact of rainfall. The average soil loss for all the four sub-watersheds was calculated, and it was found that the maximum average soil loss of 24.1 t/ha occurred in the sub-watershed 1.  相似文献   

18.
A soil and land use survey of Mewat area, Haryana, was carried out using the aerial photographs of 1:50,000. Four major physiographic units namely hills, piedmont plain, intermontante basin and Yamuna alluvial plain were recognised. The land use was studied in relation to the physiographic units. The legend adopted for land use classification has physiography at first level, utility at second level and management and identification at third and fourth levels respectively. Of the total area of 161,103 ha surveyed, 131,637 ha (81.72%) are cultivated. Of this 75,967 ha (47.16%) irrigated and 55,670 ha (34.56%) is unirrigated. Under uncultivated area, barren lands cover 14,224 ha (8.82%), forests occupy 3,463 ha (5.25%), settlements cover 3,300 (2.05%), water bodies occupy 1,312 ha (0.81%) and roads, railway lines, canals and drains constitute 2,167 ha (1.55%).  相似文献   

19.
Soil and Land Use Survey of Naurar subcatchment in Almora district of Uttar Pradesh was conducted to assist the authorities of the G. B. Pant University of Agriculture and Technology in their “Area Development Project”. Execution of appropriate soil conservation measures and adoption of improved agricultural practices both aimed at the betterment of the socioeconomic conditions of the population of this backward hilly tract are the major objectives of the project. The University Specialists belonging to various disciplines propose to tackle the problem on an integrated basis. A large scale soil and land use map was prepared through the adoption of a systematic Aerial Photo interpretaion procedure. For this purpose 36 large scale Panchromatic vertical aerial photographs in the scale of 1: 15,000 covering a greater part of the subcatchment and three medium scale aerial photographs in the approximate scale of 1: 40,000 were used both for systematic aerial photo-interpretation and compilation of the data during the field work. The survey provides information about the different taxonomie soil classes in the area. It is observed that about 78.7% of the area is covered under Typic Ustorthents. The erosion hazards have also been mapped and revealed 27.3% of the area under moderate to severe erosion and 26.7% under severe to very severe erosion. Broad suggestions for proper utilisation of land resources have also been made.  相似文献   

20.
Soil erosion which occurs at spatially varying rate is a widespread threat to sustainable resource management at watershed scale. Thus estimation of soil loss and identification of critical area for implementation of best management practice is central to success of soil conservation programme. The present study focuses application of most widely used Universal Soil Loss Equation (USLE) to determine soil erosion and prioritization of micro-watersheds of Upper Damodar Valley Catchment (UDVC) of India. Annual average soil loss for the entire basin is 23.17 t/ha/yr; for micro-watersheds. High soil loss is observed in 345 micro-watersheds, medium in 159 micro-watersheds and low soil loss is observed in 201 micro-watersheds. It is found that, out of 705 micro-watersheds of UDVC, 453 micro-watersheds are in agreement with AISLUS suggested priority which is based on observed sediment yield, 116 micro-watersheds under predict and 136 micro-watersheds over predict the priority. Geographic Information System (GIS) is applied to prepare various layers of USLE parameters which interactively estimate soil erosion at micro-watershed level. The main advantage of the GIS methodology is in providing quick information on the estimated value of soil loss for any part of the investigated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号