首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对青藏高原东北缘地区河流阶地资料的对比研究表明,阶地的高度与阶地的形成年代之间具一定相关性,同时,阶地的形成年代与黄土剖面中古土壤年代完全可以对比,因此,以阶地的高度代替阶地级数,并借用兰州地区黄土标准剖面的古土壤年代,建立了青藏高原东北缘地区晚第四纪水系沉积物的年代标尺。阶地抬升速率研究表明,大约自150万a以来,青藏高原东北缘地区正在进行着持续的构造抬升,并且呈越来越快的趋势  相似文献   

2.
兰州及邻近地区河流阶地变形特征   总被引:1,自引:2,他引:1       下载免费PDF全文
根据兰州及邻区黄河及其次级河流阶地纵剖面研究,分析了横穿活动断裂的河流阶地的变形特征,利用横穿黄河的兴隆山—马衔山断裂、海原断裂和穿越庄浪河的NWW向断裂附近阶地发育和变形特征确定了相应地区的构造抬升幅度及速率。  相似文献   

3.
河流阶地作为构造和气候作用的载体,记录了活动造山带地区的构造活动和气候变化之间的相对变化信息。文中以穿过祁连山北缘活动断裂带的洪水坝河和马营河为例,探讨河流地貌发育与构造和气候之间的关系。基于遥感影像解译识别出8—9级河流阶地,并对其期次进行划分。根据洪水坝河T5和马营河T6阶地的相对拔河高度和年龄,分别计算出2条河流15ka和11ka以来的平均下切速率为(10.2±2.0)mm/a和(12.2±2.8)mm/a。再利用差分GPS分别对2条河流的T5和T6阶地面上的断层陡坎进行精确测量,结合测年结果,计算出佛洞庙-红崖子活动断裂的垂直滑移速率比河流下切速率低1个量级。对比研究区内活动断裂两侧阶地发育序列的差异性,构造抬升和河流下切速率数量级的差别,并结合祁连山北缘区域上已发表的研究结果,初步认为构造活动与气候变化共同影响祁连山北缘河流阶地的发育,其中气候变化是控制该区全新世河流阶地发育的主要因素。更深入的活动构造调查和阶地年龄约束有助于更好地揭示祁连山北缘的活动构造特征和河流演化历史。  相似文献   

4.
昆黄运动是发生在中更新世时期青藏高原及其邻区一次重要的构造抬升事件,河流阶地及地层记录能够较好地反映这次构造事件。渭河陇西段第七级阶地沉积了104.5m厚的黄土,通过对其上覆黄土剖面的古地磁、粒度研究表明,此级阶地形成年代为距今870ka,阶地拔河高度说明自中更新世以来地面至少抬升了205m,其抬升速率约为0.2m/ka。这次构造事件在时间上与昆黄运动相一致,是对青藏高原强烈抬升的响应。  相似文献   

5.
黄河在流经青藏市原东北缘海原-同以弧形构造区的过程中,发育了多达10-21组的斯座和侵蚀型阶地,其最大拔河高度为40lm,最高阶地的发育年代为1.57MaBP。通过对该区米家山、车木峡和黑山峡河口3处黄河阶地以及我国北方大范围内河流阶地的对比分析发现,河流阶地系列形成中在构造作用上具有多层次性特征,即它包含了不同范围或规模和不同级次构造隆升作用所导致的阶地。研究区的黄河阶地系列可以划分为3个层次。其中,第一层次的阶地共有6级,为我国北方大范围内同期形成的阶地,它们代表1.6Ma以来青藏高原阶段性隆升的次数,其隆升幅度由西向东逐渐减小;第二层次的阶地共有5级,为海原-天景山构造区内同期发育的阶地,它们代表1.6Ma以来该构造区本身自隆升的次数和幅度;第三层次阶地为发育在米家山东坡的10级不同期阶地,它们代表1.6Ma以来海原构造山地独自的抬升的次数和幅度。阶地发育时间与黄土-古土壤序列的对比还表明,反映青藏高原大范围构造隆升的第一层次阶地与气候变化之间有很好的可对比性,其形成年代均与相应古土壤发育时间的间冰期对应,暗示导致河流下切的在范围构造抬升与强干冷期后同样可导致河流下切的气候暖湿期紧密相关,它们共同组成了构造-气候旋回。第二层次和第三层次阶地的形成时间与气候变化之间无统一特定的关系,显示它们的形成更主要的受控于天景山块体和海原构造带的隆升作用。因此,研究区的河流阶地主要可分为2种成因类型。一种是在大范围构造抬升和气候变化联合作用下形成的构造-气候旋回阶地,此类阶地分布范围广,具有区域间的可对比性;另一种是以局部构造抬升为主导因素形成的脉动式构造旋回阶地,此类阶地的分布受 控于活动构造带,在构造区带内自成体系,不具有区域间的可对比性。  相似文献   

6.
黄河在宁夏沙坡头形成了"几"字形河曲地貌,并在河曲凸岸发育了3级河流阶地。本文针对沙坡头大弯河流阶地特征、阶地年龄,以及大拐弯的成因进行了分析,探讨本区地貌发育的机制。结果表明:(1)沙坡头大弯3级河流阶地形成的主要原因是构造抬升作用,气候变化对此处阶地形成的作用不明显。在区域新构造活动强烈的背景下,约中更新世末期中卫盆地开始抬升,黄河河道被固定,河流下切形成本区的最高阶地T3;约在70kaB.P.、8kaB.P.形成T2、T1阶地。(2)沙坡头黄河大拐弯是由香山—天景山断裂左旋走滑位错,以及水流受地球自转偏向力的河流内生动力共同作用的结果,并且河流的内生动力作用远大于前者的贡献。  相似文献   

7.
李光涛  陈国星  苏刚  杨攀新 《地震》2008,28(3):125-132
滇西地区自第四纪以来经过了复杂的构造抬升, 其上新世准平原面被差异抬升为不同高度的夷平面。 在抬升过程中, 怒江的侵蚀作用形成了深切的高山峡谷地貌, 并形成了能反映构造抬升过程的多级河流阶地。 这种高山峡谷地貌的形成不仅与构造活动有关, 还与气候变化有关, 但构造活动是主因。 通过河流阶地和夷平面的研究能够得到河流阶地特征和差异隆升特征, 并能够进一步反演该区的构造活动特征。  相似文献   

8.
阶地是研究现代河谷形成发育的重要地貌标志,结合年代学研究可以为区域古环境提供丰富的构造、气候和古水文变化信息.通过古地磁、电子自旋共振、光释光及黄土-古土壤地层序列的对比,初步确定渭河上游三阳川盆地1.2Ma以来共发育和保存着13级河流阶地.阶地特征与成因分析表明,阶地是在构造抬升背景下,河流系统对轨道尺度气候变化的响应,侧蚀堆积和深切下蚀作用交替进行.阶地序列的河漫滩顶部大多对应于古土壤层发育,表明河流下切阶地形成主要发生在古土壤开始发育的冰期向间冰期过渡阶段.河流两侧阶地时空展布的差异表明,0.62Ma三阳川盆地发生了构造反转,由过去盆地的整体抬升为主逐渐转变为断陷沉降.综合流域内阶地序列的研究,表明渭河上游现代河谷的形成发育起始于早更新世晚期1.4~1.2Ma.  相似文献   

9.
黄河中上游河段是横贯整个“柴达木 -祁连山活动地块”的贯流水系。通过对青海共和至宁夏石嘴山段长约 180 0km的黄河中上游阶地的系统考察、阶地剖面实测和年代测定 ,绘制了该河段的阶地纵剖面图。综合分析各段的阶地级数、高度、年代及变形特征得到以下认识 :该流域可划分为若干个次级活动地块 ,表现在不同地块之间的阶地抬升幅度和速率存在较大差别 ;活动地块内部在较大程度上具刚性特征 ,表现在块体内部阶地级数、高度和形成年代基本相当 ;阶地纵剖面反映的本区活动地块自 1.6MaB .P .以来的抬升量大于 3.6~ 1.6MaB .P .的抬升量 ;柴达木 -祁连山活动地块距今 1万年以来和 15~ 2 0万年间存在 2次强烈的构造抬升运动  相似文献   

10.
最近14 Ma青藏高原东北缘阶段性隆升的地貌证据   总被引:33,自引:2,他引:33  
对青藏高原东北缘代表性的河流阶地-风成堆积序列进行了沉积学、地貌学和年代学的综合调查研究, 获得了最近14 Ma以来高原东北缘阶段性隆升的新证据和新认识. 湟水流域西宁-互助地区至少发育了11级典型的河流阶地(除第1级阶地T1外, 全部为基座阶地). 测试了阶地上覆风成黄土-红粘土序列的1030块古地磁样品、16块释光样品和4000多个粉末样品, 结合地貌发育和地层结构分析表明, T11, T10, T8, T7, T3, T2和T1分别形成于距今约14, 11.3, 1.55, 1.2, 0.15, 0.07和0.01 Ma. 基于沉积物分析和地貌发育过程的研究证实, 这里的河流阶地以构造抬升驱动为主, 以气候变化对河流阶地发育的影响为辅. 因此, 西宁盆地的阶地序列指示了14 Ma以来高原东北缘的多次阶段性抬升, 其中, 在距今14, 11.3, 1.2和0.15 Ma的构造抬升是明显的. 青藏高原东北缘西宁-互助地区的河流在中新世数百万年时间内(T11到T9)下切不到100 m, 而在更新世1.2 Ma以来(T7以来)下切了432 m, 指示了该地区在晚新生代后期加速隆升的事实. 湟水流域在1.55~1.2 Ma之间有一次大的水系格局调整. 在此之前, 古河流流向是西偏南, 之后流向为东偏南, 这次水系调整与构造活动有关.  相似文献   

11.
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P. ; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B. P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also resnit in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.  相似文献   

12.
通过对河曲县城一带出露较好的黄河阶地剖面进行研究,认为河曲一带黄河三、四级阶地形成于中更新世时期,晚更新世早期形成二级阶地,全新世形成一级阶地。本区中更新世抬升速率为0.14mm/a,晚更新世抬升速率为0.18mm/a,全新世抬升速率为0.70mm/a,晚更新世和全新世抬升速率的突然加大,可能与黄河下游三门湖的贯通、区域侵蚀基准面突然降低、河流侵蚀加大有关。  相似文献   

13.
The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26Al and 10Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.  相似文献   

14.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

15.
A flight of marine terraces along the Cuban coast records Quaternary sea‐level highstands and a general slowly uplifting trend during the Pleistocene. U/Th dating of these limestone terraces is difficult because fossil reef corals have been affected by open system conditions. Terrace ages are thus often based on geological and geomorphological observations. In contrast, the minimum age of the terraces can be constrained by dating speleothems from coastal mixing (flank margin) caves formed during past sea‐level highstands and carving the marine limestones. Speleothems in Santa Catalina Cave have ages >360 ka and show various cycles of subaerial–subaqueous corrosion and speleothem growth. This suggests that the cave was carved during the MIS 11 sea‐level highstand or earlier. Some stalagmites grew during MIS 11 through MIS 8 and were submerged twice, once at the end of MIS 11 and then during MIS 9. Phreatic overgrowths (POS) covering the speleothems suggest anchialine conditions in the cave during MIS 5e. Their altitude at 16 m above present sea level indicates a late Pleistocene uplift rate of <0.1 mm/ka, but modelling also shows uplift to have been insignificant over a long timespan during the middle Pleistocene since the cave was carved. Our study shows that some flank margin caves in the region of Matanzas are older than commonly believed (i.e. MIS 11 rather than MIS 5). These caves not only can be preserved but are good markers of interglacial sea‐level highstands, more reliable than marine abrasion surfaces. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Himalaya is an active fold and thrust belt formed due to continent-continent collision between the Eurasian and Indian plates. It comprises a 3000 km long chain of mountains that span ∼1000 km across, with major boundary thrusts viz., Main Central Thrust (MCT), Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). MFT is marked as mountain front and is the most active thrust; however, evidence of tectonic activity along MCT and MBT also exists.Tectonic activity along MFT created uplifted terraces which now serve as geomorphic archives of past tectonic events. The present study focussed on a glacial-fed river Sankosh that originates in northern Bhutan, and crosses MCT, MBT and MFT before joining the Brahmaputra River in Assam. Due to tectonic uplift, the river shows a deflection at MFT, incising and thus forming four levels of strath terraces. Luminescence chronology, geomorphic studies and analysis of satellite images suggest four levels of terraces T4 (highest level, 195 m asl), T3, T2 and T1 (lowest level, 120 m asl).The quartz was found insensitive for luminescence dating, and thus fading corrected Infra-Red Stimulated Luminescence (IRSL) ages on feldspar minerals were measured that provided ages of 143-77 ka (T4), 65-36 ka (T2) and 35-14 ka (T1), respectively. The T3 terrace was present only on the right bank of the river and could not be accessed. These ages accord with other studies at the Chalsa and Malbazar, North Bengal (west of the study area) and this regional disposition of similar ages suggest that these formed during glacial-interglacial periods. The strath terraces indicate a time-averaged tectonic uplift with a 0.5 mm/year rate over the past 150 ka.  相似文献   

17.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

18.
19.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

20.
A series of 26 Quaternary shorelines, stepped between present sea level and 556 m, are studied. They are part of the flight of marine terraces of the Aspromonte region. The shorelines were determined using three geomorphological models: wave-cut platforms and gravel-built terraces associated with their sea-cliff foot, and observations of lateral changes between marine terraces and fluvial terraces. The elevation of the sea-cliff foot is either measured directly, by exposure in cross-section, or by estimation from geomorphological patterns. With caution, we connect the different landmarks of the shorelines which are discontinuous because of destruction between interfluves or because they are overlain by torrential deposits. The results of mapping show that there are few differential movements from one transect to another and mean uplift rate is 98 cm ka?1. This rate is calculated on the basis of a correlation of the area studied with the Ravagnese Tyrrhenian site, 125 m high, whose date is isotopic substage 5e. Middle and Late Quaternary tectonic activity leads to faulting, slight folding and warping but some scarps associated with faults are actually ancient sea cliffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号