首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La Virgen is an ephemeral tributary of the Ebro River in northeast Spain with a complex alluvial sequence. We analyzed alluvial stratigraphy to develop a model of Holocene fluvial evolution for La Virgen and infer causes of floodplain dynamics. Three alluvial terraces were mapped and described using a combination of geoarchaeological and geomorphological techniques. Stratigraphic ages were estimated using 14C dating and archaeological remains. Sedimentation in the valley floor commenced in the Neolithic period ca. 6000 BC and continued during the Bronze and Iron ages (ca. 1800–500 BC), the Iberian and Roman periods (ca. 500 BC–AD 500), and the Middle Ages (ca. AD 500–1500). The main terrace (N3) is 14m thick and predominantly composed of sand, silt, and clay that we believe are derived from local hillslopes and represent a long period of human‐induced soil erosion that intensified during the Bronze and Iron ages until the Late Roman period. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
The Komadugu river system is the major Nigerian tributary to Lake Chad. Its large alluvial complex represents an important archive of the late Quaternary environmental history of the Chad Basin. Modern floodplains are incised into an older fluvial terrace that extends over 5000 km2. Evidence from satellite images suggests that the ancient river system was dammed up by the Bama Beach Ridge during high stands of mega Lake Chad. This caused the formation of extensive wetlands with a chaotic network of relic channels. The first set of luminescence ages presented here fits well into the previously established environmental history of the Chad Basin. Both the early and mid‐Holocene pluvial periods as well as a final relatively humid period during the late Holocene are reflected by point bar to overbank deposits or channel fills. The onset of the Holocene was characterised by erosion of older dune fields as indicated by grain‐size distributions of the alluvium. Satellite images and sedimentological observations show that the floodplain was dominated by meandering channels shifted by frequent avulsion, reflecting a high variability in precipitation and discharge patterns at the beginning and end of Holocene humid periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Processes of floodplain development and the record of Princess Point cultural occupation (A.D. 500–1000) were examined at the Grand Banks site in the lower Grand River of southern Ontario. The Princess Point Complex of the early Late Woodland is significant because it represents the first shift to horticulture in this region in which inhabitants made significant use of floodplains. The floodplain of the lower Grand River has been constructed primarily via vertical accretion of sediment in a low energy environment conducive to limited erosion and slow burial of middle and late Holocene sediments. At this site, cultural materials are preferentially preserved in two buried soils each corresponding to relatively stable periods of valley infilling at or before 3200 B.P. and 1500 B.P. (14C years). Initial formation of the floodplain and subsequent stability of the floodplain surface can be tied to middle Holocene, and later, base-level fluctuations in Lake Erie. Understanding floodplain development is crucial in determining the linkages between settlement pattern and chronology, and, conversely, the archaeological record in floodplain settings provides important contemporary data for modeling floodplain geomorphological processes. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
Analysis of a flight of alluvial terraces in the Sierra Nevada National Park near Pico Mucuñuque in the Eastern Mérida Andes has yielded information on geomorphic, pedogenic, and vegetational changes from Late Glacial time to the present. The terraces formed in large part due to stream incision/migration triggered by neotectonic uplift (>7000 yr BP) of a Late Glacial/Early Holocene glaciolacustrine lithosequence and, with the exception of the oldest/highest terrace, exhibit near-uniform lithology/parent materials. Soils developed in the terrace materials range from thin, weakly developed profiles (O/C/Cu horizons) to Entisols with O/Ah/Cox/Cu horizons and similar buried counterparts representing former short periods of floodplain stability or slow aggradation. The buried soils provide organic-rich material that yields radiocarbon ages, which provide time constraints on individual pedons and the geomorphic development of the site. Iron and aluminum extracts of soil matrix material provide information on the formation and accumulation of goethite and hematite, the relative accumulation of ferrihydrite (gain/loss), and the downward translocation of organically complexed Al as a function of soil development and age. SEM analysis of heavy mineral grains indicates varying material sources and degrees of weathering in the soil chronosequence. A qualitative study of plant functional types across the terrace sequence shows that older surfaces support greater plant diversity. The study also suggests ways in which the plant communities influence soil development at the site through varying organic matter inputs and varying soil moisture use by specific species (e.g., ferns on the oldest terrace), which may explain the absence of B horizons in the Late Pleistocene/Early Holocene soils.  相似文献   

5.
The integration of geomorphic mapping, soil stratigraphy, and radiocarbon dating of alluvial deposits offers insight to the timing, magnitude, and paleoclimatic context of Holocene fan sedimentation near Yuma, Arizona. Mapping of 3400 km2 indicates about 10% of the area aggraded in the late Holocene and formed regionally extensive alluvial fan and alluvial plain cut-and-fill terraces. Fan deposits have weakly developed gravelly soils and yielded a date of 3200–2950 cal yr BP from carbonized wood. Alluvial plain deposits have weakly developed buried sandy soils and provided a date of 2460–2300 cal yr BP from a terrestrial snail shell. Precipitation records were analyzed to form historical analogues to the late Holocene aggradation and to consider the role of climatic variability and extreme hydrologic events as drivers of the sedimentation. The historical precipitation record indicates numerous above-average events correlated to the Southern Oscillation Index (SOI) in the region, but lacks any significant reactivation of alluvial fan surfaces. The timing of aggradation from 3200 to 2300 cal yr BP correlates well with other paleoclimatic proxy records in the southwestern U.S. and eastern Pacific region, which indicate an intensification of the El Niño-Southern Oscillation (ENSO) climatic pattern and rapid climate change during this period.  相似文献   

6.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

8.
A section cut across an alluvial fan and the underlying floodplain terrace in the central Grampian Highlands provides an unusually complete record of late Holocene events. At ca. 2.7–2.4 cal kyr BP floodplain aggradation was replaced by net floodplain incision. Pollen evidence and charcoal counts provide no evidence for contemporaneous anthropogenic landscape change, and the timing of the transition suggests that it reflects an increase in high-magnitude erosive flood events following overall climatic deterioration. The overlying fan was deposited by torrential hyperconcentrated flows during three brief storm-generated depositional events at ca. 2.2–2.1, 1.9–1.8 and 0.9–0.7 cal kyr BP, separated and succeeded by prolonged periods of stability and peat accumulation. During these three events, a cumulative total of ca. 6750 m3 of sediment was deposited, probably in no more than a few hours over a timescale of two millennia. These findings imply that proposed links between human activity and the development of alluvial fans or debris cones require reassessment, and that different elements of the Holocene alluvial landscape have responded in different ways to the same climatic inputs. Aggregation of dating evidence relating to aggradation or incision of alluvial landforms at different scales therefore may produce misleading results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Geoarchaeological investigations in western Middle Park provide important information for understanding the soil‐stratigraphic context of Paleoindian components, as well as the latest Quaternary environmental change and landscape evolution in a Southern Rocky Mountain intermontane basin. Paleoindian components are associated with the oldest two of four latest Quaternary stratigraphic units (1–4) recognized in co‐alluvial mantles (combined slopewash and colluvium) in uplands and in alluvial valley fills. Limited data suggest accumulation of unit 1 as early as ∼12,500 14C yr B.P. in alluvial valleys and by at least ∼11,000 14C yr B.P. in uplands was followed by brief stability and soil formation. A relatively widespread disconformity marks earliest Holocene erosion and substantial removal of latest Pleistocene deposits in upland and alluvial settings followed by unit 2 deposition ∼10,000–9000 14C yr B.P., perhaps signaling the abrupt onset of an intensified summer monsoon. In situ Paleoindian components in uplands are found in a moderately developed buried soil (the Kremmling soil) formed in units 1 and 2 in thin (≤1m) hillslope co‐alluvial mantles. The Kremmling soil reflects geomorphic stability in upland and alluvial settings ∼9000–4500 14C yr BP, and represents a buried landscape with the potential to contain additional Paleoindian components, although elsewhere in western Middle Park Early Archaic components are documented in morphologically similar soils. Kremmling soil morphology, the relative abundance of charcoal in unit 2 relative to younger units, and charcoal morphology indicate the expansion of forest cover, including Pinus, and grass cover during the early and middle Holocene, suggesting conditions moister than present. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
全新世与上次间冰期气候差异的古土壤记录   总被引:11,自引:2,他引:11       下载免费PDF全文
郭正堂  刘东生 《第四纪研究》1993,13(1):41-55,T000
目前国际上对全新世与上次间冰期的气候差异还存在着较大的争议。对西欧阿晴里姆黄土中全新世和上次间冰期古土壤(埃姆古土壤),中国黄土中S0及S1的对比研究表明,埃姆古土壤和S1是典型的复合土壤,记载了相同的沉积-成壤事件序列,并与深海氧同位素记录有很好的一致性。第一成壤期与氧同位素阶段5e相对应,代表了典型的间冰期气候。西欧在该时期形成的土壤与全新世土壤的成壤过程基本相同,二者反映了类似的气候条件;而中国黄土中S0和S1则具很大差异,这表明我国北方最后两次间冰期的气候条件显著不同。青藏高原在中更新世末期以来的隆升对季风环流的影响是值得注意的原因之一。  相似文献   

11.
A soil survey around the archaeological site of Harappa, Pakistan revealed alluvial deposits of five distinct ages based on relative position in the landscape and degree of soil profile development. the youngest deposit (age 1) is in the lowest landscape position and has received flood waters as recently as 1988. Soils there are in an incipient stage of development: only organic carbon and soluble salts have accumulated at the surface of the profile. the age 2 deposit has not undergone significant pedogenic change, but is in a slightly higher landscape position than the youngest deposit. Elevated concentrations of P, and the presence of sand-sized pottery and brick fragments, indicate that this deposit was derived at least partially from archaeological material. the presence of small, soft calcite nodules (Stage II) and some soluble salt translocation are the primary pedogenic changes observed in the age 3 deposit. the age 4 deposit shows evidence of both carbonate and gypsum accumulation. Presence of large gypsum nodules in deep By horizons suggests that a high groundwater table has altered these soils. the oldest deposit, age 5, forms a late Pleistocene stream terrace of the Ravi River. the soil formed in this deposit exhibits considerable carbonate accumulation, with large, dense nodules (Stage II + ) and an argillic horizon. A 14C date from pedogenic calcite gives an age of 7080 ± 90 years B.P., indicating a minimum age of early Holocene. the soil survey suggests that the ancient city of Harappa was built on an age 5 stream terrace remnant, surrounded by Holocene floodplains and a meandering channel of the Ravi River.  相似文献   

12.
A complex late Quaternary alluvial history was documented along Henson Creek, a low order tributary on the Fort Hood Military Reservation in central Texas. Three Quaternary alluvial landforms were recognized: terrace 2 (T2), terrace 1 (T1), and the modern floodplain (T0). The late Pleistocene T2 terrace may contain an array of sites spanning the entire known cultural record, while T1 may have sites spanning the last 5000 years only. Five fluvial units, three colluvial facies, two alluvial fan facies, and two buried paleosols were also recognized. Fluvial deposition was occurring approximately 15,000 yr B.P., 10,000-8000 yr B.P., 7000–4800 yr B.P., 1650-600 yr B.P., and during the last 400 years. Colluvial deposition was ongoing mainly in the early and middle Holocene, while alluvial fan aggradation was proceeding primarily in the middle Holocene. Because of erosional unconformities, there is minimal potential for recovering buried sites dating to intervals between depositional eposides for most of the drainage basin. Preservation potentials for buried sites are greatest in fine-grained fluvial deposits dating to the late Pleistocene, early Holocene, and parts of the late Holocene, and in fine-grained colluvial deposits dating to the early and middle Holocene. This investigation demonstrates that within the study area, and perhaps throughout much of central Texas, a greater continuum of sediments and preservation potentials exists in late Quaternary alluvial deposits of rivers than in low-order tributaries.  相似文献   

13.
Soil is a dynamic natural body and fundamental resource. Human activities influence intensively the natural processes in soils. They modify and accelerate the development of soils. In this investigation, the deposition of colluvial sediments (colluviation) and soil formation are proposed as geoindicators for a better understanding of long-term environmental changes and environmental impact assessment. Deposition of colluvial sediments during several time periods and subsequent soil formation under different land-use systems reflect important aspects on the long-term human interference in the environment. In this study, we hypothesize that intensive human activities and environmental changes during middle and late Holocene are responsible for a strong modification of soils in an investigation area in Schleswig–Holstein (Germany). Soil age information together with geomorphological data, physical, chemical and biological soil properties provide the database which is necessary to study the types and rates of colluviation and soil formation. After the investigation with a high resolution in time and space, results show that middle and late Holocene land-use changes and land management are responsible for soil formation in colluvial layers. Properties of soils and sediments vary intensively from Mesolithic until Modern times. Intensive soil formation took place during periods of geomorphodynamic stability in dense woodland. Evidence in our investigations shows that colluviation has a strong relation with decision-making and environmental degradation in the past. This confirms, too, that a geoindicator concept is needed to understand and to monitor long-term environmental changes and degradation.  相似文献   

14.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

15.
In midwestern United States the most important widespread environmental event during the Holocene about 8000 y.a. was the establishment of an effective precipitation pattern that in part defines the Prairie Peninsula. The pattern occupies a region that is dominated by dry westerly air for 6–9 mo during normal years and for 9–12 mo during drought years. Regional soil geography correlates readily with zones of precipitation effectiveness with Brunizem (Udolls) conforming to the moist, subhumid zone, Chernozem (Boralls, Udolls) relating to the dry, subhumid zone, and Chestnut and Brown soils (Ustolls) fitting the semiarid zone. During the past few thousand years, a climatic reversal has caused encroachment of forest on prairie resulting in the formation of transitional or intergrade soils.In local areas the Holocene is expressed on the land surface by the soil geomorphic unit which is the repetitive occurrence of a sequence of soils on the erosional surface of a hillslope and on the correlative depositional body at the foot and toe of the slope. This unit embraces time, lithology, landscape, and soils and provides a means for mapping the Holocene on the countryside.  相似文献   

16.
The time at which deserts established their current arid or hyper-arid conditions remains a fundamental question regarding the history of Earth. Cosmogenic isotope exposure ages of desert pavement and welded, calcic–gypsic–salic Reg soils that developed on relatively flat alluvial surfaces ~2 Ma ago in the Negev Desert indicate long geomorphic stability under extremely dry conditions. Over a short interval during their initial stage of development between 1–2 Ma, these cumulative soils are characterized by calcic soils reaching maximum stage III of carbonate morphology. This interval is the only period when calcic soil horizons formed on stable abandoned alluvial surfaces in the southern Negev Desert. Since ~1 Ma pedogenesis changed toward more arid soil environment and the formation of gypsic–salic soil horizons that were later followed by dust accumulation. The dichotomy of only moderately-developed calcic soil (stages II–III) during a relatively long time interval (105–106 years) indicates an arid environment that does not support continuous development but only occasional calcic soil formation. The very low δ18O and relatively high δ13C values of these early pedogenic carbonates support soil formation under arid climatic conditions. Such an environment was probably characterized by rare and relatively longer duration rainstorms which occasionally allowed deeper infiltration of rainwater and longer retention of soil moisture. This, in turn enabled the growth of sparse vegetation that enhanced deposition of pedogenic carbonate. At ~1 Ma these rare events of slightly wetter conditions ceased and less atmospheric moisture reached the southern Negev Desert leading to deposition of soluble salts and dust deposited in the soils. The combination of long-term hyperaridity, scarcity of vegetation and lack of bioturbation, salts cementation, dust accumulation and tight desert pavement cover, has protected the surfaces from erosion forming one of the most remarkably stable landscapes on Earth, a landscape that essentially has not eroded, but accumulated salt and dust for more than 106 yr.  相似文献   

17.
Outcrops of buried soils on lake-plains and glacial headlands along Lake Michigan's eastern shore suggest that periodic dune-building has occurred there after relatively long (≥100 yr) periods of low sand supply. We located, described, and radiocarbon dated 75 such buried soils that crop out in 32 coastal dune fields beside the lake. We assume that peaks in probability distributions of calibrated 14C ages obtained from wood, charcoal, and other organic matter from buried A horizons approximate the time of soil burial by dunes. Plotted against a late Holocene lake-level curve for Lake Michigan, these peaks are closely associated with many 150-yr lake highstands previously inferred from beach ridge studies. Intervening periods of lower lake levels and relative sand starvation apparently permitted forestation and soil development at the sites we studied. While late Holocene lake-level change led to development and preservation of prominent foredunes along the southern and southwestern shores of Lake Michigan, the modern dune landscape of the eastern shore is dominated by perched dunes formed during 150-yr lake highstands over the past 1500 yr.  相似文献   

18.
Floodplain deposition is an essential part of the Holocene sediment dynamics of many catchments and a thorough dating control of these floodplain deposits is therefore essential to understand the driving forces of these sediment dynamics. In this paper we date floodplain and colluvial deposition in the Belgian Dijle catchment using accelerator mass spectrometric radiocarbon and optical stimulated luminescence dating. Relative mass accumulation curves for the Holocene were constructed for three colluvial sites and 12 alluvial sites. A database was constructed of all available radiocarbon ages of the catchment and this database was analysed using relative sediment mass accumulation rates and cumulative probability functions of ages and site‐specific sedimentation curves. Cumulative probability functions of ages were split into different depositional environments representing stable phases and phases of accelerated clastic deposition. The results indicate that there is an important variation between the different dated sites. After an initial stable early and middle Holocene phase with mainly peat growth in the floodplains, clastic sedimentation rates increased from 4000 BC on. This first phase was more pronounced and started somewhat earlier for colluvial deposits then for alluvial deposits. The main part of the Holocene deposits, both in colluvial and alluvial valleys, was deposited during the last 1 ka. The sedimentation pattern of the individual dated sites and the catchment‐wide pattern indicate that land use changes are responsible for the main variations in the Holocene sediment dynamics of this catchment, while the field data do not provide indications for a climatological influence on the sediment dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Four late-Quaternary alluvial fills and terraces are recognized in Wolf Creek basin, a small (163 km2) drainage in the Kansas River system of the central Great Plains. Two terraces were created during the late Pleistocene: the T-4 is a fill-top terrace underlain by sand and gravel fill (Fill I), and the T-3 is a strath terrace cut on the Cretaceous Dakota Sandstone. Both Fill II (early Holocene) and Fill III (late Holocene) are exposed beneath the T-2, a Holocene fill-top terrace. The T-1 complex, consisting of one cut and three fill-top terraces, is underlain by Fills III and IV. A poorly developed floodplain (T-0) has formed within the past 1000 yr. As valleys in Wolf Creek basin filled during the early Holocene, an interval of soil formation occurred about 6800 yr B.P. Early Holocene fill has been found only in the basin's upper reaches, indicating that extensive erosion during the middle Holocene removed most early-Holocene fill from the middle and lower reaches of the basin. Valley filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 1500, and 1200 yr B.P. As much as 6 m of entrenchment has occurred in the past 1000 yr. Holocene events in Wolf Creek basin correlate well with those in other localities in the central Great Plains, indicating that widespread changes in climate, along with adjustments driven by complex response, influenced fluvial activity.  相似文献   

20.
The formation of highly phosphatized soils on sites of avian activity is a common feature of oceanic islands. We characterized a toposequence of phosphatic soils on Rata Island, to evaluate the soil genesis based on local topographic variations. For this purpose, four soils ranging from the upper hill down to the lowest landscape position on the island, representing a range of parent materials (basalt and calcareous sands), were analyzed. In the lowest landscape position a shallow Regosol was identified, strongly influenced by birds and marine sprays, developed on “karstified” Pleistocene calcarenites; the three other soils in the upper part of the toposequence are Ornithogenic Cambisols, ranging from a deep Cambisol profile on Basalt lava to intermediate Cambisols on mixed colluvial sediments of the basalt/calcareous. The lowermost Regosol is associated with a rugged landscape with strong calcarenite dissolution and karstification. The soil phosphatization is clearly an inherited process of the Late Quaternary age, when climate conditions were different. Initial weathering took place in the last interglacial period, under wetter conditions during which the Tertiary basalts were strongly weathered, leaving corestones in a saprolitic, oxidized mass. In the late Pleistocene, a gentle surface distributed these weathering products along the pediment slopes as colluvial materials, whereas in the coastal areas aeolian processes formed large sand dunes composed of reworked calcareous sands from marine sources during a time of very low sea level. During this time, widespread bird activity accounted for secondary apatite formation on the surface of calcareous oolites. Finally, the Holocene warming was accompanied by increasing sea level, enhanced tropical weathering, Fe and Al mobility and variscite formation superimposed on degraded Ca-phosphates, forming two phase phosphatic aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号