首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of magnetic clouds on cosmic ray intensity variation   总被引:1,自引:0,他引:1  
The data from a high counting rate neutron monitor has been analysed to study the nature of galactic cosmic-ray transient modulation associated with three classes of magnetic clouds, i.e., clouds associated with shock, stream interface and cold magnetic enhancement.It is found that the decreases in cosmic-ray intensity which are associated with clouds preceded by a shock, are very high (Forbush-type) and these decreases start earlier than the arrival of the cloud at the Earth. From the study of the time profile of these decreases it is found that the onset time of a Forbush-type decrease produced by a shock-associated cloud starts nearly at the time of arrival of the shock front at the Earth and the recovery is almost complete within a week.The decreases in cosmic-ray intensity associated with clouds followed by a stream interface are smaller in magnitude and larger in duration. The depression starts on the day of the arrival of the cloud.The decreases associated with the third category of clouds, i.e., clouds associated with cold magnetic enhancement (a region in which plasma temperature is anomalously low and the magnetic field strength is enhanced) are of still smaller amplitude and duration. The decrease in this case starts on the day the cloud arrives at the Earth.It seems that the Forbush decrease modulating region consists of a shock front followed by a plasma sheath in which the field intensity is high and turbulent. The amplitude of decrease is related to the field magnitude and the speed of the cloud. Both shocked plasma and the magnetic cloud are influential in determining the time profile of these decreases. In our view it is not the magnetic field strength or the topology alone which is responsible for the cosmic-ray depression. The most likely additional effect is the increased degree of turbulence.  相似文献   

2.
Data of cosmic-ray intensity from the Calgary Super Neutron Monitor and interplanetary plasma and field data are divided into three groups corresponding to the magnetic clouds preceded by shocks, followed by interaction region and clouds without any such association, observed during the period 1967–1982. A superposed epoch analysis of these data, in addition to the field variance data, have been performed. The results suggest the hypothesis that the Forbush decreases are caused by the scattering of particles in the region of enhanced turbulence, observed during the passage of shocked plasma (i.e., sheath) between the shock front and the magnetic cloud.  相似文献   

3.
We compare the cosmic-ray response to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) during their passage in near-Earth space. We study the relative importance of various structures/features identified during the passage of the ICMEs and CIRs observed during Cycle 23 (1995?–?2009). The identified ICME structures are the shock front, the sheath, and the CME ejecta. We isolate the shock arrival time, the passage of the sheath region, the arrival of ejecta, and the end time of their passage. Similarly, we isolate the CIR arrival, the associated forward shock, the stream interface, and the reverse shock during the passage of a CIR. For the cosmic-ray intensity, we utilize the data from high counting rate neutron monitors. In addition to neutron monitor data, we utilize near-simultaneous and same time-resolution data of interplanetary plasma and field, namely the solar-wind velocity, the interplanetary magnetic field (IMF) vector, and its variance. Further, we also utilize some derived interplanetary parameters. We apply the method of the superposed-epoch analysis. As the plasma and field properties are different during the passage of different structures, both in ICMEs and CIRs, we systematically vary the epoch time in our superposed-epoch analysis one by one. In this way, we study the role and effects of each of the identified individual structures/features during the passage of the ICMEs and CIRs. Relating the properties of various structures and the corresponding variations in plasma and field parameters with changes of the cosmic-ray intensity, we identify the relative importance of the plasma/field parameters in influencing the amplitude and time profiles of the cosmic-ray intensity variations during the passage of the ICMEs and CIRs.  相似文献   

4.
Cosmic-ray intensity data recorded with the ground-based neutron monitor at Deep River have been investigated taking into account the associated interplanetary magnetic field and solar-wind plasma data during 1981 – 1994. A large number of days having abnormally high or low amplitudes for five or more successive days as compared to the annual average amplitude of diurnal anisotropy have been taken as high- or low-amplitude anisotropic wave-train events. The amplitude of the diurnal anisotropy of these events is found to increase on days with a magnetic cloud as compared to the days prior to the event, and it is found to decrease during the later period of the event as the cloud passes the Earth. The high-speed solar-wind streams do not play any significant role in causing these types of events. However, corotating solar-wind streams produce significant deviations in cosmic-ray intensity during high- and low-amplitude events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic-ray decreases. Hα solar flares have a good positive correlation with both the amplitude and direction of the anisotropy for high-amplitude events, while the principal magnetic storms have a good positive correlation with both amplitude and direction of the anisotropy for low-amplitude events. The source responsible for these unusual anisotropic wave trains in cosmic rays has been proposed.  相似文献   

5.
We investigate the effects of two magnetic clouds on hourly cosmic-ray intensity profiles in the Forbush decrease events in November 2004 observed by 47 ground-based neutron-monitor stations. By using a wavelet decomposition, the start time of the main phase in a Forbush decrease event can be defined, and then clearer definitions of initial phase, main phase, and recovery phase are proposed. Our analyses suggest that the main phase of this Fd event precedes the arrival time of the first magnetic cloud by about three hours, and the Fds observed at the majority (39/47) of the stations were found to originate from the sheath region as indicated by large fluctuations in magnetic field vectors at 19:00 UT on 7 November 2004, regardless of the station location. In addition, about 45% of the onset times of the recovery phase in the Forbush decreases took place at 04:00 UT on 10 November, independent of the station position. The results presented here support the hypothesis that the sheath region between the shock and the magnetic cloud, especially the enhanced turbulent magnetic field, results in the scattering of cosmic-ray particles, and causes the following Forbush decreases. Analysis of variation profiles from different neutron monitors reveals the global simultaneity of this Forbush decrease event. Moreover, we infer that the interplanetary disturbance was asymmetric when it reached the Earth, inclined to the southern hemisphere. These results provide several observational constraints for more detailed simulations of the Forbush decrease events with time-dependent cosmic-ray modulation models.  相似文献   

6.
A subset of CMEs, called interplanetary magnetic clouds (MCs), are observed to have systematic rotation [northward to southward (NS) or southward to northward (SN)] in their field structures. These MCs identified in the heliospheric plasma and field data at 1 AU may have different features associated with them. These structures (NS/SN) may be isolated MC moving with the ambient solar wind. MCs (NS/SN) may also be associated with shock/sheath region, formed due to compression of the ambient plasma/field ahead of them. A fraction from each of these four types of MCs have additional features, being ‘pushed’ by fast solar wind streams from coronal holes, forming interaction region (IR) between MCs and high-speed solar wind streams (HSS). Using these different sets of MCs, we have done a detailed study of the geoeffectiveness of NS and SN turning MCs and their associated features (shock/sheath, IR and HSS). To study the process that produces the geomagnetic disturbances and influences its amplitude/duration, we have utilized the interplanetary plasma and field parameters, namely, plasma velocity, density, temperature, pressure, field strength and its north-south component, during the passage of these structures with different associated properties. Differences in the geoeffectiveness of MCs with different structural and dynamical properties have been identified. The possible role of high-speed stream in influencing the recovery time (and hence duration) of geomagnetic disturbance has also been investigated. A best-fit equation representing the relation between level of the geomagnetic activity (due to MCs) and interplanetary plasma/field parameter has been obtained.  相似文献   

7.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

8.
Two distinct regions of shock-associated magnetic clouds, (i) magnetically turbulent regions formed due to interaction between magnetic cloud and ambient magnetic field i.e. turbulent interaction region (TIR), and magnetically quiet region called magnetic cloud have been considered separately and correlation of interplanetary plasma and field parameters, magnetic field strength (B) and solar wind speed (V), with cosmic ray intensity (I) have been studied during the passage of these two regions. A good correlation between B and I and between V and I has been obtained during the passage of sheath when the magnetic field is high and turbulent, while these correlation have been found to be poor during the passage of magnetic clouds when the field is strong and smooth. Further, there is a positive correlation between enhancement in field strength and its variance in the sheath region. These results strongly support the hypothesis that most Forbush decreases are due to scattering of particles by region of enhanced magnetic turbulence. These results also suggest that it will provide a better insight if not the magnetic field enhancement alone but in addition, the nature of magnetic field enhancement is also considered while correlating the field enhancements with depressions in cosmic rays. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We study the temporal behavior of the power spectra for Galactic cosmic-ray fluctuations during the last two solar cycles. We use the 5-min data for 1980–2002 corrected for the barometric effect from two widely separated high-latitude cosmic-ray stations, Tixie Bay and Oulu. The cosmicray fluctuation spectrum is shown to be subjected to a regular long-term modulation with a period of about 11 years in phase with the solar cycle, in accordance with the variations in the inertial part of the turbulence spectrum for the interplanetary magnetic field. Based on independent measurements, we confirm the previously detected cosmic-ray fluctuation power enhancement at the maximum of the 11-year solar cycle and its subsequent decrease at minimum solar activity using new, more extensive data sets. We reach the conclusion about the establishment of a new cosmic-ray modulation phenomenon that has not been described previously in scientific literature.  相似文献   

10.
A criterion of the instability of a flow of a thermal plasma and cosmic rays in front of an oblique MHD shock wave with respect to short-wavelength magnetosonic disturbances is derived. The dependence of a cosmic-ray diffusion tensor on a plasma density and a large-scale magnetic field is taken into account. The most unstable disturbances propagate at an angle to the magnetic field if diffusion is strongly anisotropic. In some cases the most strong instability connects with the off-diagonal terms of the diffusion tensor.  相似文献   

11.
The variations in the form of the cosmic-ray fluctuation power spectrum as an interplanetary shock wave approaches the Earth have been calculated for different values of cosmic ray anisotropy. The relevant experimental estimates of the power spectra are inferred from the data of cosmic ray detection with the ground-based neutron monitors at cosmic-ray stations. A comparison between the theoretical and experimental estimates has demonstrated an important role of the cosmic ray anisotropy spectrum in the generation of the power spectrum as the latter is rearranged before the interplanetary medium disturbances.  相似文献   

12.
Over the last few years, the pre-decreases or pre-increases of the cosmic-ray intensity observed before a Forbush decrease, called the precursor effect and registered by the worldwide neutron monitor network, have been investigated for different cases of intense events. The Forbush decreases presented in this particular study were chosen from a list of events that occurred in the time period 1967?–?2006 and were characterized by an enhanced first harmonic of cosmic-ray anisotropy prior to the interplanetary disturbance arrival. The asymptotic longitudinal cosmic-ray distribution diagrams for the events under consideration were studied using the “Ring of Stations” method, and data on solar flares, solar-wind speed, geomagnetic indices, and interplanetary magnetic field were analyzed in detail. The results revealed that the use of this method allowed the selection of a large number of events with well-defined precursors, which could be separated into at least three categories, according to duration and longitudinal zone. Finally, this analysis showed that the first harmonic of cosmic-ray anisotropy could serve as an adequate tool in the search for precursors and could also be evidence for them.  相似文献   

13.
The ground level cosmic-ray intensity enhancement on September 18, 1979 is analysed by combining neutron monitor data with simultaneous in situ interplanetary measurements. An explanation of the increase with respect to local acceleration process, alternate to that suggested by Agrawal and Venkatesan (1982), is given in connection with the effect of a magnetic field annihilation region.  相似文献   

14.
The behavior of the cosmic-ray intensity and anisotropy near the neutral sheet of the interplanetary magnetic field has been studied at the sector-boundary crossing times. The detected patterns are indicative of a north-south asymmetry in the interplanetary magnetic field attributable to a systematic shift of its neutral sheet into the southern hemisphere.  相似文献   

15.
A detailed analysis has been carried out to study the onset times of cosmic-ray decreases occurring during 1978–1982 with respect to the arrival times of interplanetary shocks and magnetic clouds. The observations demonstrate that shocks, magnetic clouds and a combination of both could effectively trigger a cosmic-ray decrease when they are associated with turbulent sheaths of maximum thickness 15.0 hr (0.15 AU). Further, the shocks associated with enhanced solar wind velocity produce a fast decrease and the magnetic clouds accompanied by extended and enhanced magnetic field produce a slow decrease. The decrease, non-correlated with the arrival times of shocks and magnetic clouds, represents a corotating cosmic-ray decrease produced by corotating streams.  相似文献   

16.
A mechanism explaining the generation of the helium-enriched plasma-condensation colud (HAE-events) behind the front of shock waves associated with mass-ejecting flares is presented. The mechanism is based on the occurence of physical conditions, analogous to those in a Wilson cloud chamber in a magnetic field, behind the front of a flare-generated shock wave propagation out into interplanetary space. Consequently, if the solar atmosphere above the flare active region is saturated with ejected helium plasma, conditions are created for the forming of the helium-enriched plasma-condensation colud in the temperature-depressed region behind the shock wave front.  相似文献   

17.
Two types of interplanetary shocks have been identified and classified into two groups, those associated with a helium-enhancement and those not associated with any helium-enhancement. The cosmic-ray intensity decreases at Calgary neutron monitor are studied with respect to the arrival time of the two groups of shocks. The observations show that large Forbush decreases are caused by shocks associated with the helium-enhancement; and those not associated with He shocks show comparatively a small decrease in cosmic-ray intensity.  相似文献   

18.
Badruddin 《Solar physics》2002,209(1):195-206
We have studied the effects of quasi-parallel and quasi-perpendicular shocks on the transient modulation of cosmic-ray intensity. Interplanetary magnetic field strength, its variance and solar wind velocity during their passage have also been considered for the analysis in this work. It has been demonstrated that magnetically turbulent quasi-parallel shocks are much more effective in producing Forbush decreases in cosmic-ray intensity than the non-turbulent quasi-perpendicular shocks. From these results it is inferred that turbulence in the shock environment is an important factor in causing Forbush decreases by scattering particles due to magnetic field fluctuations. Results presented in this study provide more specific information about structures responsible for Forbush decreases, physical processes mainly responsible for this phenomenon and the possibility of predicting the likely occurrence of Forbush decreases from observations in space.  相似文献   

19.
A large Forbush-type decrease with an amplitude of 16–22% was observed by the world-wide network of cosmic-ray detectors during the period 13–14 July, 1982. Combined neutron-monitor measurements with interplanetary plasma and magnetic field data, auroral data, and Earth's magnetospheric data are used for the study of this event. It is suggested that this interesting event is probably a consequence of the dynamic interactions of the solar wind with the Earth's magnetosphere as it is obvious from the large magnetic storm which was recorded in the auroral electrojet indices.  相似文献   

20.
We examine the near-Earth Interplanetary Coronal Mass Ejection (ICME) apparently related to the intense Solar Energetic Particle (SEP) event of 20 January 2005. Our purpose is to contribute to the understanding of the macroscopic structure, evolution and dynamics of the solar corona and heliosphere. Using Cluster, ACE and Wind data in the solar wind, and Geotail data in the magnetosheath, we perform a multi-spacecraft analysis of the ICME-driven shock, post-shock magnetic discontinuities and ejecta. Traversals by the well-separated near-Earth spacecraft provide a coherent picture of the ICME geometry. Following the shock, the ICME sequence starts with a hot pileup, i.e.,? a sheath, followed by a fast ejecta characterised by a non-compressive density enhancement (NCDE), which is caused essentially by an enrichment in helium. The plasma and magnetic observations of the ejecta are consistent with the outskirts of a structure in strong expansion, consisting of nested magnetic loops still connected to the Sun. Within the leading edge of the ejecta, we establish the presence of a tilted current sheet substructure. An analysis of the observations suggests that the tilted current sheet is draped within the overlying cloud canopy, ahead of a magnetic cloud-like structure. The flux rope interpretation of this structure near L1, confirmed by observations of the corresponding magnetic cloud, provided by Ulysses at 5.3 AU and away from the Sun?–?Earth line, indicates that the bulk of the cloud is in the northwest sector as seen from the Earth, with its axis nearly perpendicular to the ecliptic. This is consistent with the primary direction of travel of the fast halo CME observed at the Sun. Moreover, the NCDE and helium enrichment are consistent with the position near the streamer belt of the flaring active region NOAA 10720 associated with the CME. However, differences between interplanetary and solar observations indicate a large rotation of the erupting filament and overlying arcade, which can be attributed to the flux rope being subject to the helical kink instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号