首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A numerical model detailing the functioning and emergent behaviour of an eroding coastal system is described. Model output from a 50-km study region centred on the soft-rock shore of northeast Norfolk was verified through comparison with cliff recession rates that were extracted from historical maps spanning more than a century. Predictions were then made for the period 2000 to 2100 under combined climatic change and management scenarios. For the scenarios evaluated, the model was relatively insensitive to increases in offshore wave height and moderately sensitive to changes in wave direction, but the most important effects were associated with accelerated sea-level rise (SLR). In contrast to predictions made using a modified version of the Bruun rule, the systems model predicted rather complex responses to SLR. For instance, on some sectors of coast, whereas the Bruun rule predicted increased recession under accelerated SLR, the systems model actually predicted progradation owing to the delivery of sediment from eroding coasts up-drift. By contrast, on coasts where beaches are underlain by shore platforms, both the Bruun rule and the systems model predicted accelerated recession rates. However, explicit consideration of the interaction between beach and shore platform within the systems model indicates that these coasts have a broader range of responses and lower overall vulnerability to SLR than predicted by the Bruun rule.  相似文献   

2.
Food security in India is tightly linked to rainfall variability. Trends in Indian rainfall records have been extensively studied but the subject remains complicated by the high spatiotemporal variability of rainfall arising from complex atmospheric dynamics. For various reasons past studies have often produced inconsistent results. This paper presents an analysis of recent trends in monthly and seasonal cumulative rainfall depth, number of rainy days and maximum daily rainfall, and in the monsoon occurrence (onset, peak and retreat). A modified version of the Mann-Kendall test, accounting for the scaling effect, was applied to 29 variables derived from square-degree-resolution daily gridded rainfall (1951–2007). The mapping of gridded trend slopes and the regional average Kendall test were used concurrently to assess the field significance of regional trends in areas exhibiting spatial homogeneity in trend directions. The statistics we used account for temporal and spatial correlations, and thus reduce the risk of overestimating the significance of local and regional trends. Our results i/ improve available knowledge (e.g. 5 %-field-significant delay of the monsoon onset in Northern India); ii/ provide a solid statistical basis to previous qualitative observations (e.g. 1 %-field-significant increase/decrease in pre-monsoon rainfall depth in northeast/southwest India); and, iii/ when compared to recent studies, show that the field significance level of regional trends (e.g. in rainfall extremes) is test-dependent. General trend patterns were found to align well with the geography of anthropogenic atmospheric disturbances and their effect on rainfall, confirming the paramount role of global warming in recent rainfall changes.  相似文献   

3.
江苏省近45a极端气候的变化特征   总被引:5,自引:8,他引:5  
利用江苏省35个测站1960—2004年45 a的逐日最高温度、最低温度、日降水量资料集,分析了近45 a江苏省极端高温、极端低温以及极端降水的基本变化特征。结果表明:(1)多年平均年极端高温的空间分布表现为西高东低,而极端低温则表现为自北向南的显著增加,极端降水的发生频次自南向北逐渐减少;(2)极端高温在江苏中部以及南部大部分地区有上升趋势,而西北地区则有弱的下降趋势;全省极端低温表现为显著的升高趋势;极端降水频次在南部地区有增加的趋势,北部减少趋势,中部则无变化趋势。(3)江苏极端高温、低温和极端降水的年际和年代际变化具有区域性差异,其中极端降水频次变化的区域性差异最为明显。  相似文献   

4.
The flowering characteristics of plant species of economic interest and the influence of climate on them are of great importance considering the implications for fruit setting and the final harvest: Olive is one of the typical species of the Mediterranean habitat. We have investigated the timing of olive full flowering during the anthesis period and flowering intensity over a period of 20 years (1990–2009), in three major cultivation areas of the Mediterranean basin: Italy, Spain and Tunisia. The importance of these characteristics from a bioclimatic point of view is considered. The biological behaviour was studied to determine its main relationships with temperature and water availability, considering also the different sub-periods and the bio-climatic variations during the study period. The flowering dates and pollen emissions show different behaviours for the Spanish monitoring area in comparison with the other two olive cultivation areas. In the Italian and Tunisian areas, the flowering period over the last decade has become earlier by about 5 and 7 days, respectively, in comparison to the previous decade. Moreover, pollen emissions have decreased in Perugia (Italy) and Zarzis (Tunisia) over the period of 2000–2009, while in Cordoba (Spain), they showed their highest values from 2005 to 2009. The climate analysis has shown an increase in temperature, which results in an increase in the growing degree days for the growth of the olive flower structures, particularly in the more northern areas monitored. Although the olive tree is a parsimonious water consumer that is well adapted to xeric conditions, the increase in the potential evapotranspiration index over the last decade in the Italian and Tunisian olive areas might create problems for olive groves without irrigation, with a negative influence on the flowering intensity. Overall, in all of these Mediterranean monitoring areas, the summer water deficit is an increasingly more important parameter in comparison to the winter parameters, which confirms that the winter period is not as limiting as the summer period for olive tree cultivation in these Mediterranean areas.  相似文献   

5.
21世纪中国东北地区气候变化预估   总被引:11,自引:3,他引:11       下载免费PDF全文
利用各国政府间气候变化专门委员会(IPCC)第4次科学评估报告中全球气候系统模式组考虑人类排放情景的计算结果,计算与分析了多个气候模式对21世纪中国东北地区气候变化的集成预估结果。多模式集成预估结果表明:到21世纪后期,由于人类排放增加的影响,中国东北地区气温将可能较目前变暖3.0℃或以上,降水将可能增加。需要注意这种气候变化对中国东北地区社会经济的长远影响。  相似文献   

6.
Theoretical and Applied Climatology - We assessed the trends of precipitation, maximum and minimum temperature (Tmax and Tmin), diurnal temperature range (DTR), water requirement of autumn-planted...  相似文献   

7.
8.
A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.  相似文献   

9.
We present an analysis of climate change over southern South America as simulated by a regional climate model. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. The simulations cover a 10-year period representing present-day climate (1981–1990) and two future scenarios for the SRESA2 and B2 emission scenarios for the period 2081–2090. There are a few quantitative differences between the two regional scenarios. The simulated changes are larger for the A2 than the B2 scenario, although with few qualitative differences. For the two regional scenarios, the warming in southern Brazil, Paraguay, Bolivia and northeastern Argentina is particularly large in spring. Over the western coast of South America both scenarios project a general decrease in precipitation. Both the A2 and B2 simulations show a general increase in precipitation in northern and central Argentina especially in summer and fall and a general decrease in precipitation in winter and spring. In fall the simulations agree on a general decrease in precipitation in southern Brazil. This reflects changes in the atmospheric circulation during winter and spring. Changes in mean sea level pressure show a cell of increasing pressure centered somewhere in the southern Atlantic Ocean and southern Pacific Ocean, mainly during summer and fall in the Atlantic and in spring in the Pacific. In relation to the pressure distribution in the control run, this indicates a southward extension of the summer mean Atlantic and Pacific subtropical highs.  相似文献   

10.
 The Louvain-la-Neuve climate model (here referred to as the LLN 2-D model has been used extensively to simulate the Northern Hemisphere ice volume under both the insolation and CO2 forcings. The period analysed here covers the last 200 ky. First, sensitivity analyses to constant CO2 concentration were performed. The model was accordingly forced by insolation changes only, the CO2 concentration being kept constant to respectively 210, 250 and 290 ppmv. Results show that the simulated ice volume variations are comparable to the geological reconstructions only when the CO2 concentration is low (210 ppmv) and that the sensitivity of the simulated Northern Hemisphere ice volume to CO2 is not constant through time. Second, three CO2 reconstructions were used to force the LLN 2-D model in addition to insolation. Results show (1) a better agreement with the SPECMAP oxygen isotope time series, in particular as far as the amplitude of the signal is concerned, and (2) that the simulated Northern Hemisphere ice volume is not very sensitive to the slight differences between these three reconstructions.  相似文献   

11.
12.
Through analyzing the yearly average data obtained from 123 regular meteorological observatorieslocated in the Tibetan Plateau (T-P), this article studies the characteristics of climate change in T-P inthe last 40 years. From the distribution of the linear trend, it can be concluded that the southeasternpart of T-P becomes warmer and wetter, with an obvious increase of rainfall. The same characteristicsare found in the southwestern part of T-P, but the shift is smaller. In the middle of T-P, temperature andhumidity obviously increase with the center of the increase in Bangoin-Amdo. The south of the TarimBasin also exhibits the same tendency. The reason for this area being humid is that it gets less sunshineand milder wind. The northeastern part of T-P turns warmer and drier. Qaidam Basin and its westernand southern areas are the center of this shift, in which the living environment is deteriorating. Analyzingthe characteristics of the regional average time series, it can be found that in the mid-1970s, a significantsudden change occurred to annual rainfall, yearly average snow-accumulation days and surface pressurein the eastern part of T-P. In the mid-1980s, another evident climatic jump happened to yearly averagetemperature, total cloud amount, surface pressure, relative humidity, and sunshine duration in the samearea. That is, in the mid 1980s, the plateau experienced a climatic jump that is featured by the increase oftemperature, snow-accumulation days, relative humidity, surface pressure, and by the decrease of sunshineduration and total cloud amount. The sudden climatic change of temperature in T-P is later than that ofthe global-mean temperature. From this paper it can be seen that in the middle of the 1980s, a climaticjump from warm-dry to warm-wet occurred in T-P.  相似文献   

13.
The climate of Namaqualand in the nineteenth century   总被引:1,自引:0,他引:1  
Southern African climatic change research is hampered by a lack of long-term historical data sets. This paper aims to extend the historical climate record for southern Africa to the semi-arid area of Namaqualand in the Northern Cape province of South Africa. This is achieved through extensive archival research, making use of historical documentary sources such as missionary journals and letters, traveller’s writings and government reports and letters. References to precipitation and other climatic conditions have been extracted and categorised, providing a proxy precipitation data set for Namaqualand for the nineteenth century. Notwithstanding problems of data accuracy and interpretation the reconstruction enables the detection of severe and extreme periods. Measured meteorological data, available from the late 1870s, was compared to the data set derived from documentary sources in order to ascertain the accuracy of the data set and monthly rainfall data has been used to identify seasonal anomalies. Confidence ratings on derived dry and wet periods, where appropriate, have been assigned to each year. The study extends the geographical area of existing research and extracts the major periods of drought and climatic stress, from the growing body of historical climate research. The most widespread drought periods affecting the southern and eastern Cape, Namaqualand and the Kalahari were 1820–1821; 1825–1827; 1834; 1861–1862; 1874–1875; 1880–1883 and 1894–1896. Finally, a possible correspondence is suggested between some of the widespread droughts and the El Nino Southern Oscillation (ENSO).  相似文献   

14.
15.
We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables.  相似文献   

16.
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.  相似文献   

17.
18.
The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere–ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961–1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region’s weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021–2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10–20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.  相似文献   

19.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

20.
In the Pacific Ocean, the coherent pattern of interdecadal variations in sea surface temperature (SST) over the last 100 years has been termed the Interdecadal Pacific Oscillation (IPO). To examine past variations in the IPO we have generated time series of Sr/Ca and oxygen isotopes (18O) from South Pacific Porites coral colonies growing at Rarotonga (1997 to 1726) and Fiji (1997 to 1780). At both sites skeletal Sr/Ca is highly correlated with instrumental SST at least back to 1970 and 18O appears to reflect both SST and South Pacific Convergence Zone (SPCZ) effects on seawater 18O. Comparison of our results to a New Caledonia coral 18O record and to indices of interdecadal Pacific climate variability demonstrates that these South Pacific corals have accurately recorded twentieth century variations in the IPO and SPCZ. The coral records also indicate that higher amplitude and more spatially coherent IPO-related variability existed from 1880 to 1950 with notably poor between-site correlations in the mid-1800s. These observations suggest that the spatial IPO pattern in South Pacific SST was significantly more complex and/or poorly defined in the mid-1800s compared to that observed in the twentieth century. Comparison with North Pacific IPO indices also indicates that the degree of cross-hemispheric symmetry of interdecadal oceanographic variability has changed over time with a lower correlation between the North and South Pacific in the mid-1800s. This evidence suggests that the spatial pattern of the IPO at least in the South Pacific has varied over the last 300 years, with a major reorganization occurring after 1880 A.D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号