首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四川呷村V HMS矿床:从野外观察到成矿模型   总被引:11,自引:11,他引:11  
呷村矿床是一个与晚三叠世海相钙碱性酸性火山岩系有关的典型块状硫化物(VHMS)矿床。热水流体系统和贱金属成矿作用发育于义敦岛弧碰撞造山带上的弧间裂谷盆地内,并受其内部的一系列局限盆地及SN向基底断裂-裂缝系统控制。含矿岩系为双峰岩石组合,具火山碎屑岩-矿体-喷气岩“三位一体”特征。硫化物矿床具有“块状矿席+层控网脉状矿带”式三维结构特征。块状矿席发育多旋回的硫化物-硫酸盐韵律型式,揭示热水流体在海底的幕式排泄以及硫化物-硫酸盐在卤水池内的韵律式化学淀积和滑塌堆积过程。层控网脉状矿带产出于流纹质火山岩系,与上覆的块状矿席平行展布,揭示高渗透性碎屑岩层和多条同级别断层或断裂共同约束海底下部热水流体,并诱导其“弥散式”排泄和侧向流动交代。热水流体的传导冷凝过程导致硫化物沉积、热水流体与冷海水的简单混合导致硅质岩或/重晶石淀积,传导冷凝与海水混合的联合作用导致含硫化物重晶石、硅质岩和红碧玉形成。  相似文献   

2.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

3.
The changing vision of marine minerals   总被引:1,自引:0,他引:1  
Peter A. Rona   《Ore Geology Reviews》2008,33(3-4):618-666
Non-fuel marine minerals are reviewed from the perspective of resources and their value as active analogs that can advance understanding of types of ancient ore deposits that formed in marine settings. The theory of plate tectonics is the largest influence in expanding our vision of marine minerals and in developing our understanding of geologic controls of mineralization in space and time. Prior to the advent of plate tectonics, we viewed the ocean basins as passive sinks that served as containers for particulate and dissolved material eroded from land. This view adequately explained marine placer deposits (heavy minerals and gems), aggregates (sand and gravel), and precipitates (phosphorites and manganese nodules). Although numerous sites of placer mineral deposits are known on continental shelves worldwide, current activity pertains to diamond mining off southwestern Africa, tin mining off southeastern Asia, and intermittent gold mining off northwestern North America, which are all surpassed economically by worldwide recovery of marine sand and gravel, in turn dwarfed by offshore oil and gas. With the advent of plate tectonics, plate boundaries in ocean basins are recognized as active sources of mineralization in the form of hydrothermal massive sulfide deposits and proximal lower-temperature deposits hosted in oceanic crust (mafic at ocean ridges and felsic at volcanic island arcs), and of magmatic Ni–Cu sulfide, chromite and PGE deposits inferred to be present in the oceanic upper mantle–lower crust based on their occurrence in ophiolites. Some 300 sites of hydrothermal active and relict mineralization, most of them minor, are known at this early stage of seafloor exploration on ocean ridges, in fore-arc volcanoes, at back-arc spreading axes, and in arc rifts; deposits formed at spreading axes and transported off-axis by spreading are present in oceanic lithosphere but are virtually unknown. The TAG (Trans-Atlantic Geotraverse) hydrothermal field in the axial valley of the Mid-Atlantic Ridge (latitude 26° N) is considered to exemplify a major Volcanogenic Massive Sulfide (VMS) deposit forming at a spreading axis. The most prospective of these occurrences lie within the 200 nautical mile (370 km)-wide Exclusive Economic Zone (EEZ) of the nations of the volcanic island arcs of the western Pacific where metal content of massive sulfides (Ag, Au, Ba, Cu, Pb, Sb, Zn) exceeds that at ocean ridges. Plate tectonics early provided a framework for mineralization on the scale of global plate boundaries and is providing guidance to gradually converge on sites of mineralization through regional scales of plate reorganization, with the potential to elucidate the occurrence of individual deposits (e.g., Eocene Carlin-type gold deposits). Investigation of the spectrum of marine minerals as active analogs of types of ancient mineral deposits is contributing to this convergence. Consideration of questions posed by Brian Skinner (1997) of what we do and do not know about ancient hydrothermal mineral deposits demonstrates the ongoing advances in understanding driven by investigation of marine minerals.  相似文献   

4.
现代海底热液成矿作用研究现状及发展方向   总被引:15,自引:0,他引:15  
侯增谦  莫宣学 《地学前缘》1996,3(4):263-273
现代海底热水成矿作用研究的重大进展表现在两个方面:(1)大批活动的和窒息的热液活动区和硫化物矿床在洋脊、岛弧、弧后盆地及板内火山活动中心等海底环境相继发现。在沉积物饥饿洋脊,矿床规模较小,Cu-Zn为主,沉积物覆盖洋脊,矿床规模巨大,Pb-Zn为主。弧后扩张或弧间裂陷盆地,形成Pb-Zn→Zn-Pb-Cu→Cu-Zn矿床谱系。岛弧环境硫化物矿床不具规模,板内火山活动中心以氧化物-硫化物矿化为特色。(2)现代海底热水成矿作用观察和研究为古代VMS矿床成因研究提供了重要信息,对现有成矿理论产生重要影响。现代成矿观念强调:①海底成矿作用虽可产生于不同环境,但均与张裂断陷事件密切相关。矿床规模和分布特点受张裂速率制约;②成矿物质主体来源于热水循环的火山-沉积岩和下伏基底物质;③硫化物堆积发生于丘堤-烟囱联合构成的机构和结壳下部,通过开放空间的硫化物充填和先成矿石淋滤迁移来实现。④热液流体呈双扩散对流循环。现代海底热水成矿作用的未来研究方向可概括为强度方向和广度方向。广度研究将加大力度去发现新的矿床,强度研究将采用地球物理方法并配以必要的钻探,深入揭示矿床的三维结构和热液体系及成矿机制。  相似文献   

5.
Formation of volcanogenic massive sulfide deposits: The Kuroko perspective   总被引:3,自引:0,他引:3  
The main objective of this paper is to identify the geochemical, hydrological, igneous and tectonic processes that led to the variations in the physical (size, geometry) and chemical (mineralogy, metal ratios and zoning) characteristics of volcanogenic massive sulfide deposits with respect to space (from a scale of mining district size area to a global scale) and time (from a < 10 000 year time scale to a geologic time scale).All volcanogenic massive sulfide deposits (VMSDs) appear to have formed in extensional tectonic settings, such as at mid ocean spreading centers, backarc spreading centers, and intracontinental rifts (and failed rifts). All VMSDs appear to have formed in submarine depressions by seawater that became ore-forming fluids through interactions with the heated upper crustal rocks. Submarine depressions, especially those created by submarine caldera formation and/or by large-scale tectonic activities (e.g., rifting), become most favorable sites for the formation of large VMSDs because of hydrological, physical and chemical reasons.The fundamental processes leading to the formation of VMSDs include the following six processes:
1. (1) Intrusion of a heat source (typically a 103 km size pluton) into an oceanic crust or a submarine continental crust causes deep convective circulation of seawater around the pluton. The radius of a circulation cell is typically 5 km. The temperature of fluids that discharge on the seafloor increases with time from the ambient temperature to a typical maximum of 350°C, and then decreases gradually to the ambient temperatures in a time scale of 100 to 10 000 years. The majority of sulfide and sulfate mineralization occurs during the waxing stage of hydrothermal activity.
2. (2) Reactions between low temperature (T < 150°C) country rocks with downward percolating seawater cause to precipitate seawater SO2−4 as disseminated gypsum and anhydrite in the country rocks.
3. (3) Reactions of the “modified” seawater with higher-temperature rocks at depths during the waxing stage cause the transformation of the “seawater” to metal- and H2S-rich ore-forming fluids. The metals and sulfide sulfur are leached from the county rocks; the previously formed gypsum and anhydrite are reduced by Fe2+-bearing minerals and organic matter, providing additional H2S. The mass of high temperature rocks that provide the metals and reduced sulfur is typically 1011 tons ( 40 km3 in volume). The roles of magmatic fluids or gases are minor in most massive sulfide systems, except for SO2 to produce acid-type alteration in some systems.
4. (4) Reactions between the ore-forming fluids and cooler rocks in the discharge zone cause alteration of rocks and precipitation of some ore minerals in the stockwork ores.
5. (5) Mixing of the ore-forming fluids with local seawater within unconsolidated sediments and/or on the seafloor causes precipitation of “primitive ores” with the black ore mineralogy (sphalerite + galena + pyrite + barite + anhydrite).
6. (6) Reactions between the “primitive ores” with later and hotter hydrothermal fluids cause transformation of “primitive ores” to “matured ores” that are enriched in chalcopyrite and pyrite.
Variations in the mineralogical and elemental characteristics, the geometry, and the size of submarine hydrothermal deposits are controlled by the following four parameters:
1. (A) The chemical and physical characteristics of seawater (composition, temperature, density), which depend largely on the geographical settings (e.g., equatorial evaporating basins),
2. (B) The chemical and physical characteristics of the plumbing system (lithology, fractures),
3. (C) The thermal structure of the plumbing system, which is determined largely by the ambient geothermal gradient, and the size and temperature of the intrusive, and
4. (D) The physical characteristics of the seafloor (depth, basin topography).
For example, the submarine hydrothermal deposits developed in basaltic plumbing systems are generally poor in Pb and Ba compared to those developed in felsic plumbing systems. The lower temperature systems are generally poorer in sulfides, but richer in iron oxides and sulfates. The higher temperature and larger hydrothermal systems tend to produce chalcopyrite and pyrite rich ores. Contrasts in the metal ratios between the Noranda-type Archean VMSDs and the younger VMSDs reflect the differences in the geothermal gradient of the plumbing systems. The submarine hydrothermal deposits developed in the near equatorial regions tend to form large continuous bedded type ores because of the likeliness of creating large stratified basins.The basic processes of submarine hydrothermal mineralization have remained essentially the same throughout the geologic history, from at least 3.5 billion year ago to the present.  相似文献   

6.
The Archean Murchison greenstone belt, Limpopo Province, South Africa, represents a rifted epicontinental arc sequence containing the largest volcanic-hosted massive sulfide (VMS) district in Southern Africa. The so-called Cu–Zn line is host to 12 deposits of massive sulfide mineralization including: Maranda J, LCZ, Romotshidi, Mon Desir, Solomons, and Mashawa with a total tonnage of three million metric tons of very high grade Zn, subordinate Cu, and variable Pb and Au ore. The deposits developed during initial phases of highly evolved felsic volcanism between 2,974.8 ± 3.6 and 2,963.2 ± 6.4 Ma and are closely associated with quartz porphyritic rhyolite domes. Elevated heat supply ensured regional hydrothermal convection along the entire rift. Recurrent volcanism resulted in frequent disruption of hydrothermal discharge and relative short-lived episodes of hydrothermal activity, probably responsible for the small size of the deposits. Stable thermal conditions led to the development of mature hydrothermal vent fields from focused fluid discharge and sulfide precipitation within thin layers of felsic volcaniclastic rocks. Two main ore suites occur in the massive sulfide deposits of the “Cu–Zn line”: (1) a low-temperature venting, polymetallic assemblage of Zn, Pb, Sb, As, Cd, Te, Bi, Sn, ±In, ±Au, ±Mo occurring in the pyrite- and sphalerite-dominated ore types and (2) a higher temperature suite of Cu, Ag, Au, Se, In, Co, Ni is associated with chalcopyrite-bearing ores. Sphalerite ore, mineralogy, and geochemical composition attest to hydrothermal activity at relatively low temperatures of ≤250 °C for the entire rift, with short-lived pulses of higher temperature upflow, reflected by proportions of Zn-rich versus Cu-rich deposits. Major- and trace-metal composition of the deposits and Pb isotope signatures reflect the highly evolved felsic source rock composition. Geological setting, host rock composition, and metallogenesis share many similarities not only with Archean VMS districts in Canada and Australia but also with recent arc–back-arc systems on the modern seafloor where fragments of continental crust and areas of elevated heat flow are involved in petrogenetic and associated metallogenic processes.  相似文献   

7.
The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data indicate derivation of the ore leads from the country rocks, which themselves show evidence for contributions from relatively unradiogenic, mantle-like lead, and more evolved or crustal lead. Geological relationships, and stable and radiogenic isotopic data, suggest that the Barite Hill gold deposit formed on the Late Proterozoic seafloor through exhalative hydrothermal processes similar to those that were responsible for the massive sulfide deposits of the Kuroko district, Japan. On the basis of similarities with other gold-rich massive sulfide deposits and modern seafloor hydrothermal systems, the gold at Barite Hill was probably introduced as an integral part of the formation of the massive sulfide deposit. Received: 17 August 1998 / Accepted: 12 October 2000  相似文献   

8.
Numerical simulation of fluid migration during the ore-forming process of the Carboniferous exhalationsedimentary (Sedex) massive sulfide deposits in the Tongling district shows that fluid and thermal activities in lying-wall rocks were limited to a small area around the main draining passage, which led to weak mineralization and alteration in the lying-wall rock. Temperature and fluid fields indicate that mineralization and alteration in the lying-wall rock of the Sedex-type deposits are usually weaker than those of volcano-hosted massive sulfide deposits. Fluid migration involves the following processes: seawater penetrating and leaching the lying-wall rocks, then mixing with ascending hydrothermal fluids in the main draining passage, and finally jetting into seafloor. Although fluid activity-influenced area is rather small,the content of metals leached out from the lying-wall rocks is high enough to form large-scale ore deposits. Tensional contemporaneous faults accompanied with strong heat flows controlled the formation and distribution of Sedex deposits.The tensional tectonic regime on the northern margin of the Yangtze block during the Hercynian provided Sedex deposits with a prerequisite geodynamic condition.  相似文献   

9.
Siliceous hot spring deposits from Steamboat Springs, Nevada, U.S.A., record a complex interplay of multiple, changing, primary environmental conditions, fluid overprinting and diagenesis. Consequently these deposits reflect dynamic geologic and geothermal processes. Two surface sinters were examined—the high terrace, and the distal apron-slope, as well as 13.11 m (43 ft) of core material from drill hole SNLG 87-29. The high terrace sinter consists of vitreous and massive-mottled silica horizons, while the distal deposit and core comprise dominantly porous, indurated fragmental sinters. Collectively, the three sinter deposits archive a complete sequence of silica phase diagenetic minerals from opal-A to quartz. X-ray powder diffraction analyses and infrared spectroscopy of the sinters indicate that the distal apron-slope consists of opal-A and opal-A/CT mineralogy; the core yielded opal-A/CT and opal-CT with minor opal-A; and the high terrace constitutes opal-C, moganite, and quartz. Mineralogical maturation of the deposit produced alternating nano–micro–nano-sized silica particle changes. Based on filament diameters of microbial fossils preserved within the sinter, discharging thermal outflows fluctuated between low-temperatures (< 35 °C, coarse filaments) and mid-temperatures ( 35–60 °C, fine filaments). Despite transformation to quartz, primary coarse and fine filaments were preserved in the high terrace sinter. AMS 14C dating of pollen from three horizons within core SNLG 87-29, from depths of 8.13 to 8.21 m (26′8″ to 26′11″), 10.13 to 10.21 m (33′3″ to 33′6″), and 14.81 to 14.88 m (48′7″ to 48′10″), yielded dates of 8684 ± 64 years, 11,493 ± 70 years and 6283 ±60 years, respectively. In the upper section of the core, the stratigraphically out-of-sequence age likely reflects physical mixing of younger sinter with quartzose sinter fragments derived from the high terrace. Within single horizons, mineralogical and morphological components of the sinter matrix were spatially patchy. Overall, the deposit was modified by sub-surface flow of alkali-chloride thermal fluids depositing a second generation of silica, and periodically, by acidic steam condensate formed during periods when the water table was low. Local faulting produced considerable fracturing of the sinter. Hence, the Steamboat Springs sinter experienced a complex history of primary and secondary hydrothermal, geologic and diagenetic events, and their inter-relationships and effects are locked within the physical, chemical and biological signatures of the deposit.  相似文献   

10.
侯增谦 《地球化学》1996,25(3):228-241
选择西南太平洋冲绳海槽现代海底烟囱硫化物矿床、日本小坂矿山上向黑矿(第三纪)和中国西南呷村黑矿型矿床(三叠纪)进行了矿石地球化学比较研究。黑矿型矿床矿石吨位-品位模式与其他火山成因块状硫化物(VMS)矿床类似,矿田(20-50km^2)矿石吨位与单个喷气-沉积型(Sedex)矿床相当,金属总量4-6Mt,为矿田范围内热液流体搬运的最大金属量。与洋脊环境VMS矿床相比,岛弧裂谷环境产出的黑矿型矿床相  相似文献   

11.
This investigation presents and interprets fluid inclusion data from different lithological units of the Cu skarn deposits at Mazraeh, north of Ahar, Azarbaijan, NW Iran. The results provide an assessment of the PT conditions and mineral–fluid evolution and suggest new exploration parameters. Five types of inclusions are recognized from quartz and garnet. The temperature of homogenization of Type I inclusions with daughter minerals halite and sylvite ranges from 312° to 470 °C with total salinity of 52 to 63 wt.% NaCl equiv.; Type II and III inclusions with halite have homogenization temperatures of 230° to 520 °C and salinity of 31 to 50 wt.% NaCl equiv. The salinity of Types IV and V biphase (liquid + vapor) inclusions, based on their final ice melting temperature, varies between 10.2 to 20.8 wt.% NaCl equiv. Th vs. salinity plots of inclusions show that the salinity of the fluids correlates positively with temperature. The inclusions formed at low pressure. Changes in the temperature and salinity of the fluids can be reconstructed from the inclusions. Highly saline, high-temperature fluids were most abundant during the main chalcopyrite ore-forming phase in the skarn and mineralized quartz veins. Low-salinity aqueous fluids were abundant in barren veins, in which there is no evidence for early hot high-salinity brine, and might have resulted from late-stage dilution and mixing of hydrothermal fluids with meteoric water. Based on petrographic features and fluid-inclusion data, early-stage magnetite deposition is related to boiling of fluid at temperatures of about 500 °C. At a later stage, boiling at temperatures of around 320° to 400 °C favored the deposition of sulfides and Fe mobility was decreased at these lower temperatures. The following inclusion characteristics may be used as exploration parameters in the Mazraeh area. (i) Presence of high-temperature, salt-bearing inclusions, with Th between 300 and 500 °C; (ii) High-salinity fluid inclusions; and (iii) Inclusions showing evidence of boiling of the fluid. In addition, the presence of magnetite is an important exploration parameter.  相似文献   

12.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   

13.
A multi-element geochemical study of the wall rocks of intermediate to felsic volcanic-hosted massive sulfide deposits was carried out to identify pathfinder elements which significantly enlarge the size of exploration targets. Drill core samples from the Crandon massive sulfide deposit in Wisconsin, and outcrop samples from the United Verde and Iron King deposits in Arizona, and from the Captains Flat, Mt. Costigan, and Wiseman Creek deposits in New South Wales, Australia were analyzed. Because anomalously high fluorine values have been described in several volcanic-hosted ore systems, fluorine was included in the study.All of the above deposits have patterns of fluorine enrichment around ore. Drill core samples from two noneconomic prospects within ten miles of the Crandon deposit contain background to only weakly anomalous fluorine values.At the large Crandon deposit (> 50 million tons of zinc, copper ore), fluorine enrichment extends approximately 320 m into the footwall rocks and at least 220 m into the hanging wall rocks. At the large United Verde deposit (> 50 million tons of copper, zinc ore), fluorine enrichment is recognizable in the footwall rocks at least 650 m from the ore. At the smaller Iron King deposit (five million tons production of zinc, lead, copper ore), fluorine enrichment extends for a distance of approximately 60 m into the footwall rocks. At the small deposits in New South Wales (< five million tons production of zinc, lead, copper ore), fluorine enrichment is easily recognizable, but with the samples collected, the limits of the anomalous patterns cannot be defined.Fluorine occurs in some hydrothermal systems unassociated with mineralization and is therefore not a specific signature of ore-forming processes. From the work completed, many massive sulfide deposits in volcanic rocks occur in hydrothermal systems which contain fluorine. On the basis of the data presented, if anomalously high fluorine values do exist in an exploration search area, the chances of finding a massive sulfide ore deposit are improved.Genetic models for volcanic-hosted massive sulfide ore deposits have concentrated on rock textures, alteration mineralogy, and geochemistry of the ore metals. From the data presented, fluorine should be considered as a component of massive sulfide systems in intermediate to felsic volcanic rocks, and should be considered as a possible complexing agent for the ore metals.  相似文献   

14.
The metaturbidites of the Palaeoproterozoic Jormua–Outokumpu thrust belt in eastern Finland enclose m- to km-scale ultramafic massifs that are distributed over an area of more than 5000 km2. These bodies, which almost entirely consist of highly depleted mantle peridotites (now metaserpentinites and metaperidotites), are intimately associated with massive to semimassive, polymetallic Cu–Co–Zn–Ni–Ag–Au sulphide deposits that sustained mining in the region between 1913 and 1988. Currently, one deposit (Kylylahti) is proceeding into a definitive feasibility study emphasising the renewed economic interest for Outokumpu-type deposits.The origin of these Outokumpu-type Cu–Co–Zn–Ni–Ag–Au deposits is now re-interpreted to be polygenetic. First, their formation requires deposition of a Cu-rich proto-ore within peridotitic sea floor at  1950 Ma. Close modern analogues to the proto-ore setting include, for example, the Logatchev and Rainbow fields at the Mid-Atlantic Ridge, where venting of high-T–low-pH hydrothermal fluid resulted in accumulations of Cu–Zn–Co–Ag–Au sulphides on serpentinised ultramafic seafloor. Second, the Ni-rich composition of Outokumpu sulphide ores calls for a separate source for nickel: Some 40 Ma after the deposition of the Cu-rich proto-ore – concomitant with the obduction of the ultramafic massifs – disseminated Ni sulphides formed through chemical interaction between obducting peridotite massifs and adjacent black schists. This process was related to listwaenite–birbirite type carbonate–silica alteration at margins of the ultramafic massifs. Due to this alteration, silicate nickel was released from the primary Fe–Mg silicates and redeposited as Ni sulphides in the alteration fringes of the massifs.We propose that syntectonic mixing of these two “end-member” sulphides, i.e., the primary Cu-rich proto-ore and the secondary Ni-sulphide disseminations, resulted in the uncommon metal combination of the Outokumpu-type sulphides. Late tectonic solid-state re-mobilisation, related to the duplexing of the ore by isoclinal folding, upgraded the sulphides into economic deposits.  相似文献   

15.
Jochen Kolb   《Tectonophysics》2008,446(1-4):1-15
The fabric, mineralogy, geochemistry, and stable isotope systematics of auriferous shear zones in various hydrothermal gold deposits were studied in order to discuss the role of fluids in rock deformation at temperatures between 500 °C and 700 °C. The strong hydrothermal alteration and gold mineralization indicates that effective permeability development goes ahead with high-temperature rock deformation. The economic gold enrichment is often hosted by breccias and quartz veins in the ductile shear zones, which either formed at fast strain rates or by low strain continuous deformation at slow strain rates. Both processes require (1) a close-to lithostatic to supralithostatic fluid pressure and/or (2) a strong rheology contrast of the deformed lithologies that is often developed during progressive hydrothermal alteration. Compartments of high fluid pressure are sealed from the rest of the shear zones by high-temperature deformation mechanisms, e.g. intracrystalline plasticity and diffusion creep, and compaction. In contrast, in mylonites with heterogeneous crystal plastic and brittle deformation mechanisms for the various minerals, an interconnected network of a grain-scale porosity forms an effective fluid conduit, which hampers fluid pressure build-up and the formation of veins.The auriferous shear zones of the various gold mines represent fluid conduits in the deeper crust, 100 m along strike and up to 1000 m down-dip. The hydrothermal fluids infiltrated may be responsible for low magnitude earthquakes in the Earth's lower crust, which otherwise deforms viscously.  相似文献   

16.
Seafloor massive sulfide (SMS) deposits have significant development potential. In 2011, the China Ocean Mineral Resources Research and Development Association (COMRA) and International Seabed Authority (ISA) signed a contract to explore a 10 000 km2 region of the seafloor along the Southwest Indian Ridge (SWIR) containing hydrothermal sulfides. As regulated by the contract, China will have to relinquish 50% and 75% of the contract area within 8 and 10 years, respectively. However, exploration for seafloor hydrothermal sulfide deposits in China remains in the initial stage. Based on quantitative prediction theory and the status of exploration for SMS, we assemble factors related to the deposits in terms of topography, geology, geophysics, and several other related aspects along the SWIR and extract the most favorable information to establish a prospecting prediction model for SMS. By employing the weights-of-evidence method, we obtain a weighting for each prediction factor and thereby obtain a posterior probability map for the SWIR. The prediction result suggests that the central region of the SWIR has the highest posterior probability, i.e., it is the most prospective for the formation of hydrothermal vents and related SMS. Known hydrothermal areas such as Mt. Jourdanne, area A and 10°E–16°E are all located in the regions with high posterior probability values. The Chinese contract area (47°–51°E) has the highest posterior probability value and thus can be selected as a reserved region for additional exploration. By narrowing the exploration area and improving exploration accuracy, the predictions made will provide a focus for further exploration of seafloor hydrothermal sulfide resources.  相似文献   

17.
大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究   总被引:7,自引:0,他引:7  
新测得TAG热液区中5件海底块状硫化物样品的锇含量及其同位素组成,187Os/186Os比值在2.305~7.879之间,均值为5.986,介于现代海水和上部洋壳岩石的锇同位素组成之间,表明该区海底块状硫化物中锇是海水和上部洋壳来源锇混合的产物.在海底热液循环过程中,海水的混入对该区热液流体的Os浓度及其同位素组成产生了明显的影响。  相似文献   

18.
古代与现代火山成因块状硫化物矿床研究进展   总被引:8,自引:1,他引:8  
    火山成因块状硫化物(VolcanogenicMas siveSulfide,简称VMS)矿床可见于前寒武纪至现代的各个地质时代。现代海底热液成矿作用为研究VMS矿床提供了一种新的途径,DSDP/ODP钻探资料揭示:①VMS矿床虽然可产生于不同环境,但均与张裂断陷有关。②成矿物质可能来源有 2种:一种是含矿火山岩系及下伏基底物质的淋滤;另一种是深部岩浆房挥发份的直接释放。③洋中脊海底热液循环呈双扩散对流模式。在有沉积物覆盖的洋中脊,热液循环更多地考虑流体与沉积物相互作用产生的效果。④从矿物组合的空间分布来看,热液硫化物堆积体上部以烟囱体为主,下部以块状硫化物为主,深部以网脉状硫化物为主,这在不同热液活动区似乎具有普遍性。
    VMS矿床的矿化模式反映的是一种热液成因,这种热液是深部(1~3 km)岩浆侵入所引起并通过海水在热穹隆之上循环产生的。VMS矿床的深入研究要求我们致力于发现新的矿产地,提高样品采集、分析技术,加强海底热液活动与构造、岩浆作用和环境演变的一体化研究。  相似文献   

19.
The Katanga Copperbelt is the Congolese part of the well-known Central African Copperbelt, the largest sediment-hosted stratiform Cu–Co province on Earth. Petrographic examination of borehole samples from the Kamoto and Luiswishi mines in the Katanga Copperbelt recognized two generations of hypogene Cu–Co sulfides and associated gangue minerals (dolomite and quartz). The first generation is characterized by fine-grained Cu–Co sulfides and quartz replacing dolomite. The second generation is paragenetically later and characterized by coarse-grained Cu–Co sulfides and quartz overgrown and partly replaced by dolomite. Fluid inclusion microthermometric data were collected from two different types of fluid inclusions: type-I fluid inclusions (liquid + vapor) in the quartz of the first generation and type-II fluid inclusions (liquid + vapor + halite) in the quartz of the second generation. The microthermometric analyses indicate that the fluids represented by type-I and type-II fluid inclusions had very different temperatures and salinities and were not in thermal equilibrium with the host rock.Petrographic and microthermometric data indicate the presence of at least two main hypogene Cu–Co sulfide phases in the Katanga Copperbelt. The first is an early diagenetic typical stratiform phase, which produced fine-grained sulfides that are disseminated in the host rock and frequently concentrated in nodules and lenticular layers. This phase is related to a hydrothermal fluid with a moderate temperature (115 to 220 °C, or less if reequilibration of inclusions has occurred) and salinity (11.3 to 20.9 wt.% NaCl equiv.). The second hypogene Cu–Co phase produced syn-orogenic coarse-grained sulfides, which also occur disseminated in the host rock but mainly concentrated in a distinct type of stratiform nodules and layers and in stratabound veins and tectonic breccia cement. This second phase is related to a hydrothermal fluid with high temperature (270 to 385 °C) and salinity (35 to 45.5 wt.% NaCl equiv.).A review of available microthermometric and ore geochronological data of the Copperbelt in both the Democratic Republic of Congo and Zambia supports the regional presence of the two Cu–Co phases proposed in our study. Future geochemical analyses in the Copperbelt should take into account the presence of, at least, these two Cu–Co phases, their contrasting fluid systems and the possible overprint of the first phase by the second one.  相似文献   

20.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号