首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Numerical modeling was applied to study the generation of transversal jet filaments observed in the summer of 1999 after an upwelling event off the northern coast of the Gulf of Finland. An eddy resolving model well reproduces the mesoscale coherent structures observed. It was shown that they represent manifestations of instability of alongshore baroclinic jet currents of an upwelling-downwelling origin. An estimate of the effective lateral eddy diffusivity in the mesoscale coherent structures equal to 500 m2/s was obtained as a result of statistical processing of pseudorandom model fields of the temperature and current velocity.  相似文献   

2.
A numerical simulation has been undertaken to study the process of the transport of small river runoff by alongshore baroclinic sea currents. The study is based on the implementation of the Princeton Ocean Model (POM) under the conditions of a circular stratified basin whose surface is exposed to a transient tangential wind stress to form an alongshore baroclinic current. A baroclinic current of the downwelling type (in the Northern Hemisphere directed to the left to a sea-viewing observer) was shown to provide the carrying out of the river discharge from estuary’s vicinity more effectively than that of the upwelling type (in the Northern Hemisphere directed to the right to a sea-viewing observer).  相似文献   

3.
Weller??s allometric model assumes that the allometric relationships of mean area occupied by a tree $ \bar{s} $ , i.e., the reciprocal of population density $ \rho $ , $ \bar{s}\left( { = {1 \mathord{\left/ {\vphantom {1 {\rho = g_{\varphi } \cdot \bar{w}^{\varphi } }}} \right. \kern-0em} {\rho = g_{\varphi } \cdot \bar{w}^{\varphi } }}} \right) $ , mean tree height $ \bar{H}\left( { = g_{\theta } \cdot \bar{w}^{\theta } } \right) $ , and mean aboveground mass density $ \bar{d}\left( { = g_{\delta } \cdot \bar{w}^{\delta } } \right) $ to mean aboveground mass $ \bar{w} $ hold. Using the model, the self-thinning line $ \left( {\bar{w} = K \cdot \rho^{ - \alpha } } \right) $ of overcrowded Kandelia obovata stands in Okinawa, Japan, was studied over 8?years. Mean tree height increased with increasing $ \bar{w} $ . The values of the allometric constant $ \theta $ and the multiplying factor $ g_{\theta } $ are 0.3857 and 2.157?m?kg???, respectively. The allometric constant $ \delta $ and the multiplying factor $ g_{\delta } $ are ?0.01673 and 2.685?m?3?kg1???, respectively. The $ \delta $ value was not significantly different from zero, showing that $ \bar{d} $ remains constant regardless of any increase in $ \bar{w} $ . The average of $ \bar{d} $ , i.e., biomass density $ \left( {{{\bar{w} \cdot \rho } \mathord{\left/ {\vphantom {{\bar{w} \cdot \rho } {\bar{H}}}} \right. \kern-0em} {\bar{H}}}} \right) $ , was 2.641?±?0.022?kg?m?3, which was considerably higher than 1.3?C1.5?kg?m?3 of most terrestrial forests. The self-thinning exponent $ \alpha \left( { = {1 \mathord{\left/ {\vphantom {1 {\varphi = }}} \right. \kern-0em} {\varphi = }}{1 \mathord{\left/ {\vphantom {1 {\left\{ {1 - \left( {\theta + \delta } \right)} \right\}}}} \right. \kern-0em} {\left\{ {1 - \left( {\theta + \delta } \right)} \right\}}}} \right) $ and the multiplying factor $ K\left( { = \left( {g_{\theta } \cdot g_{\delta } } \right)^{\alpha } } \right) $ were estimated to be 1.585 and 16.18?kg?m?2??, respectively. The estimators $ \theta $ and $ \delta $ are dependent on each other. Therefore, the observed value of $ \theta + \delta $ cannot be used for the test of the hypothesis that the expectation of the estimator $ \theta + \delta $ equals 1/3, i.e., $ \alpha = {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} $ , or 1/4, i.e., $ \alpha = {4 \mathord{\left/ {\vphantom {4 3}} \right. \kern-0em} 3} $ . The $ \varphi $ value was 0.6310, which is the same as the reciprocal of the self-thinning exponent of 1.585, and was not significantly different from 2/3 (t?=?1.860, df?=?191, p?=?0.06429), i.e., $ \alpha = {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} $ . Thus the self-thinning exponent is not significantly different from 3/2 based on the simple geometric model. On the other hand, the self-thinning exponent was significantly different from 3/4 (t?=?6.213, df?=?191, p?=?3.182?×?10?9), i.e., $ \alpha = {4 \mathord{\left/ {\vphantom {4 3}} \right. \kern-0em} 3} $ . Therefore, the self-thinning exponent is significantly different from 4/3 based on the metabolic model.  相似文献   

4.
Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones were analyzed in sediment samples retrieved from Ocean Drilling Program Site 1241 covering the last 150000 years to understand the hydrological evolution of the eastern Pacific warm pool (EPWP). GDGT and alkenone concentrations showed higher values in marine isotope stage (MIS)-2 and MIS-6, which suggests the enhancement of primary production at glacial maxima. $ {\text{TEX}}_{86}^{\text{H}} $ - and $ U_{ 3 7^\prime }^{\text{K}} $ -derived temperature depicted different temperature evolutions. $ U_{ 3 7^\prime }^{\text{K}} $ -derived temperature was marked by small variation during the glacial–interglacial cycles, whereas $ {\text{TEX}}_{86}^{\text{H}} $ -derived temperature showed pronounced glacial–interglacial variation that was similar to Mg/Ca-derived temperature records from nearby cores in the EPWP. Given that enhanced primary production during glacial maxima suggests nutricline shoaling, unchanged $ U_{ 3 7^\prime }^{\text{K}} $ over glacial–interglacial cycles can be interpreted as the shift of alkenone production depth. $ {\text{TEX}}_{86}^{\text{H}} $ seems not to be influenced by glacial–interglacial changes in nutricline depths, recording an integrated temperature in surface and thermocline water. The shallow nutricline in the EPWP during glacial maxima most likely reflected the intense formation of Antarctic intermediate water.  相似文献   

5.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

6.
在前人的工作中,拉格朗日分析法被用来演示大尺度环流,同时拉格朗日拟序结构可以较好的演示中尺度涡两维结构的发展过程。然而,很少研究关注怎么利用拉格朗日分析法针对中尺度涡三维结构进行演示。与以往利用欧拉方法研究中尺度涡三维结构的工作不同,我们利用拉格朗日分析法,从另一个视角来研究涡旋结构。我们在海山上方模拟出一个理想的气旋涡,涡旋内的下沉流和涡旋旁的上升流形成一个闭合的环流。这种结构很难从欧拉角度来演示。然而,粒子的运动轨迹很好地展示了整个循环:流体在涡旋中旋转下沉,汇聚到底层的上升流区,并通过上升流返回到海表面。我们也将拉格朗日分析法应用于真实的模拟结果中。作为中国南海的一个重要现象,靠近越南中部的海域中的偶极子(反气旋涡/气旋涡),关于其结构的研究已经比较成熟了,但这些研究主要关注的是海面过程。通过拉格朗日分析,我们很好的演示了偶极子的三维结构:流体在反气旋涡(气旋涡)内部旋转上升(下沉)。更重要的是,粒子的轨迹表明,这两个涡旋之间不存在水团交换,因为强边界急流将它们彼此分开。以上结论均得到了计算误差估计的可信度支持。尽管在强辐散流和强垂直扩散流中,计算误差逐渐增大,但是在一定的时间步长和积分周期内,计算误差始终保持在一个较小的值。  相似文献   

7.
在南海北部,与中尺度涡相关的季节内变异特征十分显著,通过比较不同时期流场的季节内变异特征,有助于揭示不同动力不稳定中尺度涡对季节内活动的影响。本文以南海北部2009年春季和2020年春季为例,分析了两个时期中尺度涡的动力不稳定性,从而探究季节内变异特征。基于潜标实测流速数据,本文进行了动能谱分析,结果显示这两个时期的流场季节内变异具有相似特征,显著周期分别为10~60 d和30~90 d。季节内信号主要出现在200 m以上的上表层水域,其中30~90 d的季节内流是对应观测期间的主要季节内成分。滞后回归分析和动力不稳定性的计算表明,2009年春季的季节内变异受移动快但强度弱的表层中尺度涡影响,动力不稳定性由斜压不稳定和正压不稳定共同调制;而2020年春季的季节内变异是受强斜压性的中尺度涡影响,通过流速垂向切变增强,从而较快地触发流场季节内变异的发生。本文研究结果有助于深入了解中尺度涡对南海北部季节内活动的影响机制,为海洋动力学和气候研究提供了重要的参考和理论基础。  相似文献   

8.
The mixed layer depth (MLD) front and subduction under seasonal variability are investigated using an idealized ocean general circulation model (OGCM) with simple seasonal forcings. A sharp MLD front develops and subduction occurs at the front from late winter to early spring. The position of the MLD front agrees with the curve where \({\rm D}T_{\rm s}/{\rm D}t = \partial T_{\rm s} /\partial t + {\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) is satisfied (t is time, \({\user2{u}}_{\rm g}\) is the upper-ocean geostrophic velocity, \(T_{\rm s}\) is the sea surface temperature (SST), and \(\nabla\) is the horizontal gradient operator), indicating that thick mixed-layer water is subducted there parallel to the SST contour. This is a generalization of the past result that the MLD front coincides with the curve \({\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) when the forcing is steady. Irreversible subduction at the MLD front is limited to about 1 month, where the beginning of the irreversible subduction period agrees with the first coincidence of the MLD front and \({\rm D}T_{\rm s}/{\rm D}t =0\) in late winter, and the end of the period roughly corresponds to the disappearance of the MLD front in early spring. Subduction volume at the MLD front during this period is similar to that during 1 year in the steady-forcing model. Since the cooling of the deep mixed-layer water occurs only in winter and SST can not fully catch up with the seasonally varying reference temperature of restoring, the cooling rate of SST is reduced and the zonal gradient of the SST in the northwestern subtropical gyre is a little altered in the seasonal-forcing case. These effects result in slightly lower densities of subducted water and the eastward shift of the MLD front.  相似文献   

9.
Seasonal variation of eddy kinetic energy in the South China Sea   总被引:4,自引:0,他引:4  
Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are investigated with newly reprocessed satellite altimetry observations and hydrographic data.The eddy kinetic energy ...  相似文献   

10.
The response of the Gulf of Alaska (GOA) circulation to large-scale North Pacific climate variability is explored using three high resolution (15 km) regional ocean model ensembles over the period 1950-2004. On interannual and decadal timescales the mean circulation is strongly modulated by changes in the large scale climate forcing associated with PDO and ENSO. Intensification of the model gyre scale circulation occurs after the 1976-1977 climate shift, as well as during 1965-1970 and 1993-1995. From the model dynamical budgets we find that when the GOA experiences stronger southeasterly winds, typical during the positive phase of the PDO and ENSO, there is net large-scale Ekman convergence in the central and eastern coastal boundary. The geostrophic adjustment to higher sea surface height (SSH) and lower isopycnals lead to stronger cyclonic gyre scale circulation. The opposite situation occurs during stronger northwesterly winds (negative phase of the PDO).Along the eastern side of the GOA basin, interannual changes in the surface winds also modulate the seasonal development of high amplitude anticyclonic eddies (e.g. Haïda and Sitka eddies). Large interannual eddy events during winter-spring, are phase-locked with the seasonal cycle. The initial eddy dynamics are consistent with a quasi-linear Rossby wave response to positive SSH anomalies forced by stronger downwelling favorable winds (e.g. southwesterly during El Niño). However, because of the fast growth rate of baroclinic instability and the geographical focusing associated with the coastal geometry, most of the perturbation energy in the Rossby wave is locally trapped until converted into large scale nonlinear coherent eddies. Coastally trapped waves of tropical origin may also contribute to positive SSH anomalies that lead to higher amplitude eddies. However, their presence does not appear essential. The model ensembles, which do not include the effects of equatorial coastally trapped waves, capture the large Haïda and Sitka eddy events observed during 1982 and 1997 and explain between 40% and 70% of the tidal gauges variance along the GOA coast.In the western side of the GOA basin, interannual eddy variability located south of the Alaskan Stream is not correlated with large scale forcing and appears to be intrinsic. A comparison of the three model ensembles forced by NCEP winds and a multi-century-long integration forced only with the seasonal cycle, shows that the internal variability alone explains most of the eddy variance. The asymmetry between the eddy forced regime in the eastern basin, and the intrinsic regime in the western basin, has important implications for predicting the GOA response to climate change. If future climate change results in stronger wintertime winds and increased downwelling in the eastern basin, then increased mesoscale activity (perhaps more or larger eddies) might occur in this region. Conversely, the changes in the western basin are not predictable based on environmental forcing. Eastern eddies transport important biogeochemical quantities such as iron, oxygen and chlorophyll-a into the gyre interior, therefore having potential upscale effects on the GOA high-nutrient-low-chlorophyll region.  相似文献   

11.
This study presents sand activation depth (SAD) measurements recently obtained on two contrasting beaches located along the Atlantic coast of France: the gently sloping, high-energy St Trojan beach where wave incidence is usually weak, and the steep, low-energy Arçay Sandspit beach where waves break at highly oblique angles. Comparisons between field measurements and predictions from existing formulae show good agreement for St Trojan beach but underestimate the SAD on the Arçay Sandspit beach by 40–60%. Such differences suggest a strong influence of wave obliquity on SAD. To verify this hypothesis, the relative influence of wave parameters was investigated by means of numerical modelling. A quasi-linear increase of SAD with wave height was confirmed for shore-normal and slightly oblique wave conditions, and a quasi-linear increase in SAD with wave obliquity was also revealed. Combining the numerical results with previously published relations, both a new semi-empirical and an empirical formula for the prediction of SAD were developed which showed good SAD predictions under conditions of oblique wave breaking. The new empirical formula for the prediction of SAD (Z 0) takes into account the significant wave height (H s), the beach face slope (β) and the wave angle at breaking (α), and is of the form $ Z_{0} = 1.6\tan {\left( \beta \right)}H^{{0.5}}_{{\text{s}}} {\sqrt {1 + \sin {\left( {2\alpha } \right)}} } This study presents sand activation depth (SAD) measurements recently obtained on two contrasting beaches located along the Atlantic coast of France: the gently sloping, high-energy St Trojan beach where wave incidence is usually weak, and the steep, low-energy Ar?ay Sandspit beach where waves break at highly oblique angles. Comparisons between field measurements and predictions from existing formulae show good agreement for St Trojan beach but underestimate the SAD on the Ar?ay Sandspit beach by 40–60%. Such differences suggest a strong influence of wave obliquity on SAD. To verify this hypothesis, the relative influence of wave parameters was investigated by means of numerical modelling. A quasi-linear increase of SAD with wave height was confirmed for shore-normal and slightly oblique wave conditions, and a quasi-linear increase in SAD with wave obliquity was also revealed. Combining the numerical results with previously published relations, both a new semi-empirical and an empirical formula for the prediction of SAD were developed which showed good SAD predictions under conditions of oblique wave breaking. The new empirical formula for the prediction of SAD (Z 0) takes into account the significant wave height (H s), the beach face slope (β) and the wave angle at breaking (α), and is of the form . The use of a dataset from the literature demonstrates the predictive skill of these new formulae for a wide range of wave heights, wave incidence and beach gradients.  相似文献   

12.
If knowledge of our theories on the directivity of tsunamis had received worldwide attention, the following operations could have been carried out internationally just after the large earthquake of 19 September 1985 which occurred near Acapulco, Mexico. Having found the great circle, “line S” which is perpendicular to the coast around Acapulco, we could have calculated the angles between line S and line A and between line S and line D, where line A and line D are the great circle connecting Acapulco and Auckland, New Zealand and that connecting Acapulco and Duke of York Island (Chile), respectively. The resultant angles are 30?43′ and 41?49′(>68?48′/2), we could thereafter neglect the eastern half of the offshore energy flux. When we assume that the speed of trans-Pacific tsunami is 400 knots, the probability that the actual tsunami will come earlier than the calculated arrival time proves to be $$\frac{1}{{\sqrt {2\pi } }}\int_{ - {\text{ }}\infty }^{ - {\text{ }}0.689} {e^{ - t^{{2 \mathord{\left/ {\vphantom {2 2}} \right. \kern-\nulldelimiterspace} 2}} } dt = 0.2454} $$ Contact with New Zealand prior to the forecasted arrival time was essential, but the tsunami attention for the Japanese coast was unnecessary. Without such application of our directivity theories, frequent fruitless warnings will be issued for future trans-Pacific tsunamis. Quick improvements in warning procedures are required.  相似文献   

13.
A Large-Scale Seasonal Modeling Study of the California Current System   总被引:1,自引:0,他引:1  
A high-resolution, multi-level, primitive equation ocean model has been used to investigate the combined role of seasonal wind forcing, seasonal thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the entire California Current System (CCS) region, from Baja to the Washington-Canada border. Additional objectives are to further characterize the meandering jet south of Cape Blanco and the seasonal variability off Baja. Model results show the following: All of the major currents of the CCS (i.e., the California Current, the California Undercurrent, the Davidson Current, the Southern California Countercurrent, and the Southern California Eddy) as well as filaments, meanders and eddies are generated. The results are consistent with the generation of eddies from instabilities of the southward current and northward undercurrent via barotropic and baroclinic instability processes. The meandering southward jet, which divides coastally-influenced water from water of offshore origin, is a continuous feature in the CCS, and covers an alongshore distance of over 2000 km from south of Cape Blanco to Baja. Off Baja, the southward jet strengthens (weakens) during spring and summer (fall and winter). The area off southern Baja is a highly dynamic environment for meanders, filaments, and eddies, while the region off Point Eugenia, which represents the largest coastline perturbation along the Baja peninsula, is shown to be a persistent cyclonic eddy generation region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl.  相似文献   

15.
Cascading of cold Antarctic shelf water (ASW) initiates compensatory isopycnic upwelling of the warm Circumpolar Deep Water (CDW). The baroclinic/thermoclinic Antarctic slope front (ASF) is formed, and a mesoscale intrusive structure develops on the shelf edge and slope. Mesoscale processes when the ASF peaks are periodically accompanied by local baroclinic instability, which forms a smaller-scale intrusive structure. Therefore, the ASF is naturally subdivided into two layers according to the intrusion scales (vertical δН and horizontal L) and the horizontal parameters of the front (thermoclinity (TL)ρ and baroclinity γρ). Analysis of ASF intrusive layering due to the baroclinic factor supports the following conclusion: the higher the (TL)ρ of the ASF, the greater the intrusion intensity |δθ| (temperature anomaly amplitude), while an increase in γρ of the ASF leads to a decrease in intrusion scales δН and L. Frontal intrusions can be distinguished by a development degree. Regardless of the degree of development, all warm intrusions are characterized by vertical density stratification, while cold intrusions are characterized by density quasihomogeneity. According to field data, the ASF instability process is subdivided into four stages. When theASF is baroclinically unstable, the local baroclinic deformation radius RdL of the front is close in magnitude to the horizontal scale L of the intrusions that form, and their characteristic vertical scale δH is close to the typical vertical scale of front instability.  相似文献   

16.
The distribution of the fugacity of CO2 ( $ f_{{{\text{CO}}_{ 2} }} $ ) and air–sea CO2 exchange were comprehensively investigated in the outer estuary to offshore shallow water region (lying adjacent to the Sundarban mangrove forest) covering an area of ~2,000 km2 in the northern Bay of Bengal during the winter. A total of ten sampling surveys were conducted between 1 December, 2011 and 21 February, 2012. Physico-chemical variables like sea surface temperature (SST), salinity, pH, total alkalinity (TAlk), dissolved inorganic carbon (DIC) and in vivo chlorophyll-a along with atmospheric variables were measured in order to study their role in controlling the CO2 flux. Surface water $ f_{{{\text{CO}}_{ 2} }} $ ranged between 111 and 459 μatm which correlated significantly with the SST (r = 0.71, p < 0.001, n = 62). Neither DIC nor TAlk showed any linear relationship with varying salinity in the estuarine mixing zone, demonstrating the significant presence of non-carbonate alkalinity. An overall net biological control on the surface $ f_{{{\text{CO}}_{ 2} }} $ distribution was established during the study, although no significant correlation was found between chlorophyll-a and $ f_{{{\text{CO}}_{ 2} }} $ (water). The shallow water region studied was mostly under-saturated with CO2 and acted as a sink for atmospheric CO2. The difference between surface water and atmospheric $ f_{{{\text{CO}}_{ 2} }} $ ( $ \Updelta f_{{{\text{CO}}_{ 2} }} $ ) ranged from ?274 to 69 μatm, with an average seaward flux of ?10.5 ± 12.6 μmol m?2 h?1. The $ \Updelta f_{{{\text{CO}}_{ 2} }} $ and hence the air–sea CO2 exchange was primarily regulated by the variation in sea surface $ f_{{{\text{CO}}_{ 2} }} $ , since atmospheric $ f_{{{\text{CO}}_{ 2} }} $ varied over a comparatively narrow range of 361.23–399.05 μatm.  相似文献   

17.
18.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

19.
横穿黑潮锋断面的流场结构   总被引:2,自引:0,他引:2  
基于一组简化了的运动方程组,在充分考虑底Ekman层作用的情况下,提出一种横穿锋面的断面上流场结构的计算方法。应用该方法对东海横穿黑潮锋的不同断面上的流场(1989-1990年资料)进行计算。结果表明,黑潮锋左侧(向岸侧)存在较强的上升流,而锋区右侧(离岸侧)表现为海水的下降运动。垂直流速为(1-20)×10-3cm/s的量级,而横穿锋面方向的水平流速为1-3cm/s,其中以夏、秋季跃层附近最强。在陆架坡折处,上升流转向陆架。同时,还分析了正压场和斜压场对这种流场的不同贡献,认为在黑潮区,正压场起主要作用;而在内陆架区,斜压场则变得重要。将计算的流场与硝酸盐的分布比较表明,两者有较好的对应关系。  相似文献   

20.
Idealized numerical experiments with a depth level coordinate ocean circulation model (GFDL MOM3) have been conducted to investigate the structure of interdecadal variability from thermally driven circulations. The model oceans are driven by steady surface heat fluxes in the absence of surface wind stresses. Interdecadal variability is observed, with characteristics similar to those reported in many previous studies. To explain the nature of the variability we propose a new mechanism based on two local horizontal advective processes. This overcomes the limitations in previous theories based on the interplay between global properties such as zonal and meridional temperature gradients and overturning. One of the two advective processes is a zonal flow anomaly induced by a temperature anomaly along the northern wall through geostrophy southward of the temperature anomaly. A cold (warm) anomaly along the northern wall produces a positive (negative) zonal flow anomaly that induces a warm (cold) temperature anomaly by enhancing (weakening) warm advection from the western boundary along the path of the zonal flow anomaly. The temperature and flow anomalies are transported toward the eastern boundary by the mean eastward zonal flow. When the positive (negative) zonal flow anomaly that accompanies the warm (cold) temperature anomaly encounters the eastern wall, a downwelling (upwelling) anomaly is produced. To dissipate the vorticity due to this downwelling (upwelling) anomaly, a northward (southward) flow anomaly, which is another advective process governing the variability, is generated within a frictional boundary layer next to the eastern wall. The northward (southward) flow anomaly circulates cyclonically along the perimeter of the basin while enhancing (reducing) warm advection. So does the warm (cold) temperature anomaly carried to the eastern wall by the mean zonal flow while pushing the cold (warm) anomaly that produced the positive (negative) zonal flow anomaly westward and initiating the other half cycle of the variability. During the anomalous downwelling or upwelling, the available potential energy stored in the anomalous density field is released to maintain the variability. Thus, neither barotropic nor baroclinic instability supplies energy for the variability. The anomalous vertical velocity is stronger along the northern boundary and the northern part of the eastern boundary. A shallow continental slope added along those boundaries prohibits the anomalous vertical motion and weakens variability very effectively, while one along the western boundary does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号