首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We performed high-resolution simulations of two stellar collisions relevant for stars in globular clusters. We considered one head-on collision and one off-axis collision between two 0.6-M main-sequence stars. We show that a resolution of about 100 000 particles is sufficient for most studies of the structure and evolution of blue stragglers. We demonstrate conclusively that collision products between main-sequence stars in globular clusters do not have surface convection zones larger than 0.004 M after the collision, nor do they develop convection zones during the 'pre-main-sequence' thermal relaxation phase of their post-collision evolution. Therefore, any mechanism which requires a surface convection zone (i.e. chemical mixing or angular momentum loss via a magnetic wind) cannot operate in these stars. We show that no disc of material surrounding the collision product is produced in off-axis collisions. The lack of both a convection zone and a disc proves a continuing problem for the angular momentum evolution of blue stragglers in globular clusters.  相似文献   

2.
3.
4.
5.
The properties of a massive star prior to its final explosion are imprinted in the circumstellar medium (CSM) created by its wind and termination shock. We perform a detailed, comprehensive calculation of the time-variable and angle-dependent transmission spectra of an average-luminosity gamma-ray burst (GRB) which explodes in the CSM structure produced by the collapse of a  20 M  , rapidly rotating,   Z = 0.001  progenitor star. We study both the case in which metals are initially in the gaseous phase and the situation in which they are heavily depleted into dust. We find that high-velocity lines from low-ionization states of silicon, carbon and iron are initially present in the spectrum only if the metals are heavily depleted into dust prior to the GRB explosion. However, such lines disappear on time-scales of a fraction of a second for a burst observed on-axis, and of a few seconds for a burst seen at high latitude, making their observation virtually impossible. Rest-frame lines produced in the termination shock are instead clearly visible in all conditions. We conclude that time-resolved, early-time spectroscopy is not a promising way in which the properties of the GRB progenitor wind can be routinely studied. Previous detections of high-velocity features in GRB ultraviolet spectra must have been either due to a superposition of a physically unrelated absorber or due to a progenitor star with very unusual properties.  相似文献   

6.
Recent observations suggest that long-duration γ -ray bursts and their afterglows are produced by highly relativistic jets emitted in core-collapse explosions. As the jet makes its way out of the stellar mantle, a bow shock runs ahead and a strong thermal precursor is produced as the shock breaks out. Such erupting fireballs produce a very bright γ -ray precursor as they interact with the thermal break-out emission. The prompt γ -ray emission propagates ahead of the fireball before it becomes optically thin, leading to e± pair loading and radiative acceleration of the external medium. The detection of such precursors would offer the possibility of diagnosing not only the radius of the stellar progenitor and the initial Lorentz factor of the collimated fireball, but also the density of the external environment.  相似文献   

7.
An energy deposition of ∼1050 erg into the exterior 10−3 M⊙ layers of a red giant is calculated to produce an optical phenomenon similar to afterglows of gamma-ray bursts (GRB) recently observed. This mechanism can be realized if a GRB is generated by some mechanism in a close binary system. In contrast to a 'hypernova' scenario for GRB recently proposed by Paczyński, this model does not require huge kinetic energy in the expanding shell to explain optical afterglows of GRB.  相似文献   

8.
Within the framework of the internal–external shocks model for γ -ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed γ -ray light curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt γ -ray and X-ray emission can, in principle, determine whether the quiescent episodes are caused by a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in γ -ray bursts.  相似文献   

9.
10.
11.
The collapse of massive stars may result in the formation of accreting black holes in their interiors. The accreting stellar matter may advect substantial magnetic flux on to the black hole and promote the release of its rotational energy via magnetic stresses (the Blandford–Znajek mechanism). In this paper we explore whether this process can explain the stellar explosions and relativistic jets associated with long gamma-ray bursts. In particular, we show that the Blandford–Znajek mechanism is activated when the rest mass–energy density of matter drops below the energy density of the magnetic field in the near vicinity of the black hole (within its ergosphere). We also discuss whether such a strong magnetic field is in conflict with the rapid rotation of the stellar core required in the collapsar model, and suggest that the conflict can be avoided if the progenitor star is a component of a close binary. In this case the stellar rotation can be sustained via spin-orbital interaction. In an alternative scenario the magnetic field is generated in the accretion disc, but in this case the magnetic flux through the black hole ergosphere is not expected to be sufficiently high to explain the energetics of hypernovae by the BZ mechanism alone. However, this energy deficit can be recovered via the additional power provided by the disc.  相似文献   

12.
13.
A strong correlation between the gamma-ray burster peak energy and the peak luminosity of the associated supernova was discovered by Li for four GRBs. Despite the fact that the formal significance level of the correlation is 0.3 per cent, the smallness of the data set requires careful further evaluation of the result. Subject to the assumption that the data are bivariate Gaussian, a 95 per cent confidence interval of  (−0.9972, 0.02)  for the correlation is derived. Using data from the literature, it is shown that the distribution of known peak GRB energies is not Gaussian if X-ray flashes are included in the sample. This leads to a proposed alternative to the bivariate Gaussian model, which entails describing the dependence between the two variables by a Gaussian copula. The copula is still characterized by a correlation coefficient. The Bayesian posterior distribution of the correlation coefficient is evaluated using a Markov chain Monte Carlo method. The mean values of the posterior distributions range from −0.33 to about zero, depending on the specifics of the supernova (SN) peak brightness distribution. The implication is that the existing data favour a modest correlation between the GRB peak energy and the SN peak brightness; confidence intervals are very wide and include zero.  相似文献   

14.
15.
16.
Although it is generally thought that long-duration gamma-ray bursts (LGRBs) are associated with core-collapse supernovae (SNe), so far only four pairs of GRBs and SNe with firmly established connection have been found. All the four GRB-SNe belong to special class of Type Ic – called the broad-lined SNe indicative of a large explosion energy, suggesting that only a small fraction of SNe Ibc have GRBs associated with them. This scheme has been refreshed by the discovery of a bright X-ray transient in NGC 2770 on 2008 January 9, which was followed by a rather normal Type Ib SN 2008D. In this paper, I argue that the transient 080109 is an X-ray flash (XRF, the soft version of a GRB) because of the following evidence. (1) The transient cannot be interpreted as a SN shock breakout event. (2) The GRB X-ray flare interpretation is not supported by the high-energy observation. I then show that XRF 080109 satisfies the well-known relation between the isotropic-equivalent energy and the peak spectral energy for LGRBs, which highly strengthens the XRF interpretation. Finally, I point out that the peak spectral energy of XRF 080109 and the maximum bolometric luminosity of SN 2008D agree with the   E γ,peak– L SN,max  relationship of Li, strengthening the validity of the relationship. I speculate that events like XRF 080109 may occur at a rate comparable to SNe Ibc, and a soft X-ray telescope devoted to surveying for nearby X-ray flares will be very fruitful in discovering them.  相似文献   

17.
GRB 990123 was a long, complex gamma-ray burst accompanied by an extremely bright optical flash. We find different constraints on the bulk Lorentz of this burst to be consistent with the speculation that the optical light is emission from the reverse shock component of the external shock. Motivated by this currently favoured idea, we compute the prompt reverse shock emission to be expected for bursts in which multiwavelength observations allow the physical parameters to be constrained. We find that for reasonable assumptions about the velocity of source expansion, a strong optical flash  mV≈9  was expected from the reverse shocks, which were usually found to be mildly relativistic. The best observational prospects for detecting these prompt flashes are highlighted, along with the possible reasons for the absence of optical prompt detections in ongoing observations.  相似文献   

18.
The precession of eccentric discs in close binaries   总被引:1,自引:0,他引:1  
If the emission of gamma-ray bursts were as a result of the synchrotron process in the standard internal shock scenario, then the typical observed spectrum should have a slope F ν ∝ ν −1/2, which strongly conflicts with the much harder spectra observed. This directly follows from the cooling time being much shorter than the dynamical time. Particle re-acceleration, deviations from equipartition, quickly changing magnetic fields and adiabatic losses are found to be inadequate to account for this discrepancy. We also find that in the internal shock scenario the relativistic inverse Compton scattering is always as important as the synchrotron process, and faces the same problems. This indicates that the burst emission is not produced by relativistic electrons emitting synchrotron and inverse Compton radiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号