首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
B. W. WEBB  Y. ZHANG 《水文研究》1997,11(1):79-101
Detailed hydrometeorological measurements have been used to establish the components of the river heat budget for 495 days covering 18 study periods and 11 study reaches in the Exe Basin, Devon, UK. Averaging the results across the whole data-set indicates that net radiation, friction, sensible heat transfer, condensation and bed conduction contributed 56.0, 22.2, 13.2, 5.8 and 2.8%, respectively, to the non-advective energy gains, whereas net radiation, evaporation, sensible heat exchange and bed conduction accounted for 48.6, 30.4, 10.6 and 10.4%, respectively, of the non-advective heat losses. Precipitation falling on the river channel had little impact on the river heat budgets, but energy advected in groundwater accounted for an average 5% of the heat storage in the river. The magnitude and importance of the river heat budget components were found to be variable in space and time. The influence of channel morphology, valley topography, riparian vegetation, substratum nature and hydrological conditions, especially the effects of river regulation, promoted inter-reach variability in the make up of the heat budget and caused significant differences in energy fluxes at a local scale. Heat budget components also exhibited considerable differences between seasons and varied from day to day for individual reaches. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
This paper uses detailed hydrometeorological data to evaluate the influence of channel bed processes on the river energy budget at an experimental site on the regulated River Blithe, Staffordshire, UK. Results from a pilot study are presented for eight days during July, September, October and November 1994. Total energy gains were dominated by net short-wave radiation (97·60%) with significant contributions from sensible heat exchange and friction (1·17 and 1·06%, respectively) and minor additions from condensation and bed conduction (0·16 and 0·01%, respectively). Net long-wave radiation, evaporation, conduction into the river bed, sensible heat transfer and the energy advected during evaporation accounted for 53·98, 23·56, 16·27, 5·25 and 0·94% of the total heat losses. On average, over 82% of the total energy transfers occurred at the air–water interface. Approximately 15% of the total energy exchanges occurred at the channel bed, but maximum daily heat exchanges accounted for up to 24% of the daily total energy transfer. The amount of short-wave radiation attenuated in the water column, and values measured at the channel bed varied considerably from those calculated using a standard coefficient. Values of bed conduction varied in response to different vertical thermal profiles in the channel bed, reflecting the variable influence of sedimentology and groundwater flux. Fluctuations in levels of periphyton and macrophyte cover were also shown to have a significant effect on energy fluxes at the channel bed. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This article describes a data collection approach for determining the significance of individual heat fluxes within streams with an emphasis on testing (i.e. identification of possible missing heat fluxes), development, calibration and corroboration of a dynamic temperature model. The basis for developing this approach was a preliminary temperature modelling effort on the Virgin River in southwestern Utah during a low‐flow period that suggested important components of the energy balance might be missing in the original standard surface‐flux temperature model. Possible missing heat fluxes were identified as bed conduction, hyporheic exchange, dead zone warming and exchange and poor representation of the amount of solar radiation entering the water column. To identify and estimate the relative importance of the missing components, a comprehensive data collection effort was developed and implemented. In particular, a method for measuring shortwave radiation behaviour in the water column and an in situ method for separating out bed conduction and hyporheic influences were established. The resulting data and subsequent modelling effort indicate that hyporheic and dead zone heat fluxes are important, whereas solar radiation reflection at the water surface was found to be insignificant. Although bed conduction can be significant in certain rivers, it was found to have little effect on the overall heat budget for this section of the Virgin River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In the present study an attempt has been made to understand the variation of surface energy fluxes such as net radiation, sensible, latent and soil heat during different epochs of thunderstorm activity at Kharagpur. The study also focuses in delineating the difference in the surface energy budget from the days of thunderstorm activity to fair weather days in the pre-monsoon months (April and May) which is locally known as thunderstorm season. For this purpose, experimental data obtained from the Severe Thunderstorms- Observations and Regional Modeling (STORM) programme during pre-monsoon months of 2007, 2009 and 2010 at Kharagpur (22°30′N, 87°20′E), West Bengal, India are used. The present study reveals quick response, in the order of a few days, in the variations of transport of energy fluxes at soil-atmosphere interface to the upper atmosphere vis-à-vis to the occurrence of thunderstorm activity. Rise of surface sensible heat flux to the level of surface latent heat flux a day or two before the occurrence of a thunderstorm has been identified as a precursor signal for the thunderstorm occurrence over Kharagpur. Distinguishable differences are found in the partitioning of the surface energy fluxes to that of net radiation between thunderstorm and non-thunderstorm days. The present study reveals more Bowen’s ratio during thunderstorm days to that of nonthunderstorm days. These results are useful in validating mesoscale model simulations of thunderstorm activity.  相似文献   

6.
In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere. Moreover, they would supply a research basis for studying energy closure at other places.  相似文献   

7.
Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical, and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers and river heat fluxes is essential for effective management of water and fisheries resources. This study dealt with the modelling of river water temperature using a deterministic model. This model calculated the different heat fluxes at the water surface and from the streambed using different hydrometeorological conditions. The water temperature model was applied on two watercourses of different sizes and thermal characteristics, but within a similar meteorological region, namely, the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). The model was also applied using microclimate data, i.e. meteorological conditions within the river environment (1–2 m above the water surface), for a better estimation of river heat fluxes. Water temperatures at different depths within the riverbed were also used to estimate the streambed heat fluxes. Results showed that microclimate data were essential to get accurate estimates of the surface heat fluxes. Results also showed that for larger river systems, the surface heat fluxes were generally the dominant component of the heat budget with a correspondingly smaller contribution from the streambed. As watercourses became smaller and groundwater contribution more significant, the streambed contribution became important. For instance, approximately 80% of the heat fluxes occurred at the surface for Catamaran Brook (20% from the streambed) whereas the Little Southwest Miramichi River showed values closer to 90% (10% from the streambed). As was reported in previous studies, the solar radiation input dominated the contribution to the heat gain at 63% for Catamaran Brook and 89% for Little Southwest Miramichi River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

9.
近地层能量闭合度对陆面过程模式影响   总被引:1,自引:0,他引:1       下载免费PDF全文
大量近地层观测试验表明,利用涡动相关法观测的湍流通量小于近地层可利用能量,即近地层能量是不闭合的,这种不闭合度一般为20%甚至更高.而陆面过程模式是基于地气间能量平衡建立,并且模式中的湍流边界层参数化方案通常根据实际观测的湍流通量来确定,因此能量不闭合必将对陆面过程模式造成一定的影响.本文利用2007年春季SACOL站的近地层观测资料,依据能量守恒将能量不闭合中的残余能量通过波文比分配到观测的湍流通量中,即修正涡动相关法观测的湍流通量使得近地层能量达到平衡;之后分别利用观测和修正的湍流通量,建立了能量不闭合和闭合情形下的湍流参数化方案,借助陆面过程模式SHAW,通过数值模拟和对比分析方法考察近地层能量闭合度对陆面过程模式的影响.研究结果表明近地层能量闭合对陆面过程模式有显著的影响:在陆面过程数值模拟中,当应用近地层能量不闭合的湍流通量形成的湍流参数化方案时,陆面过程模式会明显高估地表长波辐射及土壤温度;但当应用修正湍流通量使得近地层能量达到闭合形成的湍流参数化方案后,在不改变任何地表土壤物理生化属性的情况下,陆面过程模式能较好地模拟地表长波辐射和土壤温度.  相似文献   

10.
One of the challenges when modelling a complex variable such as water temperature in rivers is that it can be difficult to determine the sources of error and to ensure that the simulations are truly representative of the reality. Therefore, a heat budget study was completed in a controlled environment, which excluded advection and bottom fluxes but enabled observation of all the other fluxes. A 21.42 m3 pool was installed and insulated to limit heat exchange through the sides and bottom. All the major energy fluxes were monitored for a 50‐day period. Different equations for individual heat budget terms were tested to determine their ability to reproduce the observations. This experiment also permitted to assess the relative importance of each component of the heat budget. Performance of each semi‐empirical equation was determined by comparing predictions and measured values. It was thus possible to choose the formulae that best represented the measured heat exchange processes, while understanding the limits of some of the semi‐empirical representations of heat exchange processes. The results highlight the importance of radiative terms into the heat budget because they controlled the major sources and sinks. The study also showed the importance of the wind function determination into the calculation of latent heat flux. The resulting water temperature model returned simulated hourly water temperature with an overall root mean square error of 0.71 °C/h and a modified Nash–Sutcliffe coefficient of 0.97. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.  相似文献   

12.
鄱阳湖夏季水热通量特征及环境要素影响分析   总被引:2,自引:2,他引:0  
气候变化加速了全球水文循环过程,然而,气候变化如何影响水体蒸发及其水热通量交换仍然不清楚.基于涡度相关系统观测鄱阳湖水体水热通量过程,在小时和日尺度分析了水热通量的变化规律及其主要影响因子.研究表明,潜热通量日变化波动剧烈,大部分为正值,变化范围在-50~580 W/m2之间.而感热通量数值较小,变化范围在-50~50 W/m2之间.8月份潜热通量和感热通量均呈波动下降趋势,均值分别为167.4和15.9 W/m2.8月份日平均潜热通量和感热通量之和大于净辐射,这是由于这一时段储存在水体中的热量释放并补充潜热通量和感热通量.小时尺度上潜热通量日变化在相位上与净辐射无显著相关性,而与风速显著相关.在日尺度变化趋势上,8月份日平均潜热通量仍主要受到风速和水温的影响,感热通量则主要受到风速和饱和水汽压差的影响.  相似文献   

13.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

14.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We use Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data to estimate spatial energy flux and evaporation distributions at the Salar de Atacama, a playa in Northern Chile. Our approach incorporates ASTER surface kinetic temperature, emissivity, and reflectance data, ground-based meteorological measurements, and empirical parameters. Energy flux distributions are estimated using either spatially constant or spatially distributed values of model parameters, with spatially distributed parameters assigned separately to each land cover category in an image classification. We test the sensitivity of energy budget calculations to state variable and parameter values by conducting Monte Carlo simulations for regions with ground energy budget measurements. Results show that assigning spatially distributed model parameters via land cover classifications yields significant improvements to ground and sensible heat flux predictions. Latent heat fluxes cannot, however, be predicted with sufficient accuracy to allow estimation of area-integrated evaporative moisture loss at this low-evaporation playa.  相似文献   

16.
Estimates of daily lake evaporation based on energy‐budget data are poor because of large errors associated with quantifying change in lake heat storage over periods of less than about 10 days. Energy‐budget evaporation was determined during approximately biweekly periods at a northern Minnesota, USA, lake for 5 years. Various combinations of shortwave radiation, air temperature, wind speed, lake‐surface temperature, and vapour‐pressure difference were related to energy‐budget evaporation using linear‐regression models in an effort to determine daily evaporation without requiring the heat‐storage term. The model that combined the product of shortwave radiation and air temperature with the product of vapour‐pressure difference and wind speed provided the second best fit based on statistics but provided the best daily data based on comparisons with evaporation determined with the eddy‐covariance method. Best‐model daily values ranged from ?0.6 to 7.1 mm/day over a 5‐year period. Daily averages of best‐model evaporation and eddy‐covariance evaporation were nearly identical for all 28 days of comparisons with a standard deviation of the differences between the two methods of 0.68 mm/day. Best‐model daily evaporation also was compared with two other evaporation models, Jensen–Haise and a mass‐transfer model. Best‐model daily values were substantially improved relative to Jensen–Haise and mass‐transfer values when daily values were summed over biweekly energy‐budget periods for comparison with energy‐budget results.  相似文献   

17.
B. W. Webb  Y. Zhang 《水文研究》2004,18(11):2117-2146
The nature of intra‐annual variability in the non‐advective heat fluxes affecting streams and rivers in Devon, UK was investigated through detailed monitoring of study reaches in an upland moorland catchment, below a regulating reservoir, and flowing through deciduous woodland and coniferous forest during the period May 1995 to April 1996. A clear pattern of seasonal variation was evident, whereby net radiation provided a heat source during the summer but a heat sink in the winter, as incoming short‐wave radiation declined and outgoing long‐wave radiation increased. Sensible transfer added heat to the study reaches in the summer but removed it during the winter, and bed conduction acted as a heat sink in the summer period but as a heat source in the winter months. Friction and evaporation added and removed heat, respectively, from the study reaches throughout the year, but the magnitude of these fluxes reflected seasonal variations in discharge and in wind speed. Water temperature generally followed the net non‐advective heat energy budget, which was positive in summer but negative in winter. Although a general pattern of seasonal variability in the non‐advective heat energy budget was evident, detailed differences in the nature and extent of intra‐annual variability were apparent between the study reaches and particularly between forested and non‐forested sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Snow and ice present interesting challenges to hydrologists. Simulating the radiative balance over snow, which is an important part of surface–atmosphere interactions, is particularly challenging because of the decay in albedo over time and the difficulty in estimating surface temperature and incoming long-wave radiation fluxes. Few models are available that include a comprehensive energy and water balance for cold season conditions. The simultaneous heat and water model (SHAW) is a detailed, physical process model of a vertical, one-dimensional canopy–snow–residue–soil system which integrates the detailed physics of heat and water transfer through a plant canopy, snow, residue and soil into one simultaneous solution. Detailed provisions for metamorphosis of the snowpack are included. The SHAW model was applied to data for one winter/spring season (November to May) on a ploughed field in Minnesota without prior calibration to test the performance of the radiation components. Maximum snow depth during this period was 30 cm. For the nearly 100 days of snowcover, the model accounted for 69% of the variation in net solar radiation, 66% of the variation in incoming long-wave radiation, 87% of the variation in emitted long-wave radiation, 26% of the variation in net long-wave radiation and 55% of the variation in net radiation balance. Mean absolute error in simulated values ranged from 10 W m−2 for emitted long-wave radiation to 27 W m−2 for the entire net radiation balance. Mean bias error ranged from 8 W m−2 for emitted long-wave radiation to −16 W m−2 for the entire net radiation balance. When the entire 170 days of simulation, which included periods without snowcover, were included in the analysis, the variation in observed values increased greatly. As a result, the variation in observed values accounted for by the model increased to 97, 71, 93, 56 and 94%, respectively, while the mean absolute and mean bias errors in simulated values remained nearly the same. Model modifications and parameter adjustments necessary to improve winter-time simulation were investigated. Simulation results suggest that the SHAW model may be a useful tool in simulating the interactive influences of radiative transfer at the surface–atmosphere interface.  相似文献   

19.
Alpine headwaters in subarctic regions are particularly sensitive to climate change, yet there is little information on stream thermal regimes in these areas and how they might respond to global warming. In this paper, we characterize and compare the hydrological and thermal regimes of two subarctic headwater alpine streams within an empirical framework. The streams investigated are located within two adjacent catchments with similar geology, size, elevation and landscape, Granger Creek (GC) and Buckbrush Creek (BB), which are part of the Wolf Creek Research Basin in the Yukon Territory, Canada. Hydrometeorological and high-resolution stream temperature data were collected throughout summer 2016. Both sites exhibited a flow regime typical of cold alpine headwater catchments influenced by frozen ground and permafrost. Comparatively, GC was characterized by a flashier response with more extreme flows, than BB. In both sites, stream temperature was highly variable and very responsive to short-term changes in climatic conditions. On average, stream temperature in BB was slightly higher than in GC (respectively 5.8 and 5.7°C), but less variable (average difference between 75th and 25th quantiles of 1.6 and 2.0°C). Regression analysis between mean daily air and stream temperature suggested that a greater relative (to stream flow) groundwater contribution in BB could more effectively buffer atmospheric fluctuations. Heat fluxes were derived and utilized to assess their relative contribution to the energy balance. Overall, non-advective fluxes followed a daily pattern highly correlated to short-wave radiation. G1enerally, solar radiation and latent heat were respectively the most important heat source and sink, while air–water interface processes were major factors driving nighttime stream temperature fluctuations.  相似文献   

20.
As surface exchange processes are highly non-linear and heterogeneous in space and time, it is important to know the appropriate scale for the reasonable prediction of these exchange processes. For example, the explicit representation of surface variability has been vital in predicting mesoscale weather events such as late-afternoon thunderstorms initiated by latent heat exchanges in mid-latitude regions of the continental United States. This study was undertaken to examine the effects of different spatial scales of input data on modeled fluxes, so as to better understand the resolution needed for accurate modeling. A statistical procedure was followed to select two cells from the Southern Great Plains 1997 hydrology experiment region, each 20 km×20 km, representing the most homogeneous and the most heterogeneous surface conditions (based on soil and vegetation) within the study region. The NOAH-OSU (Oregon State University) Land Surface Model (LSM) was employed to estimate surface energy fluxes. Three scales of study (200 m, 2 and 20 km) were considered in order to investigate the impacts of the aggregation of input data, especially soil and vegetation inputs, on the model output. Model results of net radiation and latent, sensible and ground heat fluxes were compared for the three scales. For the heterogeneous area, the model output at the 20-km resolution showed some differences when compared with the 200-m and 2-km resolutions. This was more pronounced in latent heat (12% decrease), sensible heat (22% increase), and ground heat flux (44% increase) estimation than in net radiation. The scaling effects were much less for the relatively homogeneous land area with 5% increase in sensible heat and 4% decrease in ground heat flux estimation. All of the model outputs for the 2- and 20-km resolutions were in close agreement. The results suggested that, for this study region, soils and vegetation input resolution of about 2 km should be chosen for realistic modeling of surface exchange processes. This resolution was sufficient to capture the effects of sub-grid scale heterogeneity, while avoiding the data and computational difficulties associated with higher spatial resolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号