首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large amounts of marine debris are present in shallow reefs adjacent to beach haulouts of the critically endangered Hawaiian monk seal, Monachus schauinslandi. These areas serve as seal pup nurseries, and injury and death caused by entanglement in marine debris are undermining population recovery efforts. We investigated the extent of this threat by measuring the accumulation of potentially entangling derelict fishing gear in nursery zones, 1999-2001. Plots of reef 1.0-1.3 km2 at three Northwestern Hawaiian Islands were initially cleaned of derelict fishing gear in 1999 then resurveyed in 2000 and 2001. Submerged debris densities across sites ranged from 16 to 165 debris items/km2. Resurveyed sites yielded annual marine debris accumulation rates from 0 to 141 debris items/km2. This large range was attributed to the physiography of reef areas surveyed. Trawl net webbing was significantly more common than other types of debris recovered and represented 84% of all debris encountered, suggesting that much of the debris originated from distant North Pacific Ocean fisheries. The likely source of most debris is the multinational trawl fisheries of the North Pacific Ocean. An international solution to this problem is needed. Targeted marine debris removal is a short-term, successful, entanglement mitigation strategy.  相似文献   

2.
We evaluated injuries to Spartina alterniflora by debris items common to North Carolina coastal waters as a function of debris type (wire blue crab pots, vehicle tires, and anthropogenic wood) and deployment duration, and monitored S. alterniflora recovery following debris removal. Injuries sustained by S. alterniflora and subsequent recovery, varied considerably between debris types. Differences were likely due to dissimilarities in the structure and composition of debris. Tires caused an immediate (within 3 weeks) and long-term impact to S. alterniflora; tire footprints remained devoid of vegetation 14 months post-removal. Conversely, crab pot impacts were not as abrupt and recovery was short-term (<10 months). We suggest that removal programs specifically target habitats that are susceptible to negative impacts (e.g., salt marsh) and prone to debris accumulation. Management would benefit from the inclusion of habitat information in removal databases.  相似文献   

3.
Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.  相似文献   

4.
Results from visual sightings of large floating debris are presented, taken in the Ligurian Sea, a sub-basin of the north-western Mediterranean Sea which belongs to the recently stated "Cetacean Sanctuary". Data have been collected during three oceanographic cruises, during the summer of 1997 and 2000. Results for the 1997 data suggest a debris density of the order of 15-25 objects km(-2), while for the 2000 data, a lower density of the order of 3-1.5 objects km(-2) is found. The difference between the two results appears statistically significant using simple tests. Possible reasons for the observed variability are discussed, including meteorological forcing, marine currents and debris input variability.  相似文献   

5.
Marine debris composition, density, abundance, and accumulation were evaluated in salt marshes in Carteret County, North Carolina seasonally between 2007 and 2009. We assessed relationships between human use patterns and debris type. Wave effects on marine debris density were examined using a GIS-based forecasting tool. We assessed the influence of site wave exposure, period, and height on debris quantity. Presence and abundance of debris were related to wave exposure, vegetation type and proximity of the strata to human population and human use patterns. Plastic pieces accounted for the majority of all debris. Small debris (0–5 cm) was primarily composed of foam pieces and was frequently affiliated with natural wrack. Large debris (>100 cm) was encountered in all marsh habitat types surveyed and was primarily composed of anthropogenic wood and derelict fishing gear. Marsh cleanup efforts should be targeted to specific habitat types or debris types to minimize further damage to sensitive habitats.  相似文献   

6.
While many surface foraging seabirds ingest plastic, the spatial overlap of these far-ranging predators with debris aggregations at-sea is poorly understood. We surveyed concurrent distributions of marine birds and debris along a 4400 km cruise track within a debris accumulation area in the North East Pacific Ocean using line and strip transect methods. Analysis of debris and bird distributions revealed associations with oceanographic and weather variables at two spatial scales: daily surveys and hourly transects. Hourly bird abundance (densities; 0-9 birds km−2) was higher in lower wind and shallower water. Hourly debris abundance (densities; 0-15,222 pieces km−2) was higher in lower wind, higher sea-level atmospheric pressure and deeper water. These results suggest that debris and seabird abundance and community structure are influenced by similar environmental processes, but in opposing ways, with only three far-ranging seabird species (Black-footed Albatross, Cook’s Petrel and Red-tailed Tropicbird) overlapping with high debris concentrations over meso-scales.  相似文献   

7.
This survey evaluated the monthly accumulation rate of marine debris and the types of objects washed ashore at Volunteer Beach on East Falkland between October 2001 and March 2002. The mean (±SD) accumulation rate of marine debris was 77 ± 25 items/km/month, of a mean weight of 17.3 ± 12 kg. Forty different objects were collected and the five most frequent items were cotton fabric, string, polystyrene packing sheet, plastic packing tape and broken plastic pieces. The debris on Volunteer Beach was dominated by fishing debris; 42% of the items were discarded fishing equipment, while 39% of the items were of a packaging or associated nature. The mostly likely source of this household waste was fishing vessels, with Falkland Islands Government (FIG) fisheries observers seeing 27 of the 40 items of debris collected from Volunteer Beach being discarded from fishing vessels. It is suggested that, although further marine debris research is warranted, more effective at-sea ship waste disposal regulations are required in Falkland waters to reduce environmental and economic threats both at the local and international level.  相似文献   

8.
Stoopes and Sheridan have mapped a volcanic debris avalanche of Nevado de Colima which has an exceptionally long runout (120 km) and low fall-height to length ratio (H/L = 0.04). We present paleomagnetic results from this volcanic debris avalanche deposit which provide evidence that this avalanche was emplaced at elevated temperatures. The majority of samples, collected from lithic clasts in the volcanic debris avalanche deposit, exhibit two-component remanent magnetizations with a low-temperature component (25–350°C) which is well grouped about the geomagnetic field direction at Colima and a high-temperature component (350–580°C) which is randomly oriented. Although the temperature of the deposit most likely varied with distance from the volcanic source and the thickness of the deposit, our results suggest an emplacement temperature of approximately 350°C at intermediate distances (18–26 km) from the source. In order for the rock clasts (20–40 cm diameter) to be heated to these temperatures, the avalanche was most likely the results of a magmatic, Bezymianny-type eruption. The mixing of hot, juvenile gases with the clasts provides an explanation for the high degree of fluidization of this material, as evidenced by the long runout of this avalanche deposit.  相似文献   

9.
Herein we report on the abundance and composition of floating marine debris (FMD) in coastal waters of the SE-Pacific (off the Chilean coast) during the austral summer 2002. The observed FMD consisted mainly of plastic material (86.9%). Densities of FMD were highest between 20 degrees S and 40 degrees S, corresponding to the main concentrations of human population and activities. Low densities of FMD were found in the south between 40 degrees S and 50 degrees S (<1 item km(-2)). Generally, the highest densities were recorded in nearshore waters of major port cities (>20 items km(-2)), but occasionally high concentrations of debris were also found 50 km offshore. Densities of FMD in coastal waters of the SE-Pacific are of similar magnitudes as those found in coastal waters or inland seas of highly populated regions in the northern hemisphere, indicating the need for improved regulation and legislation in the countries of the SE-Pacific.  相似文献   

10.
Current glacier ablation models have difficulty simulating the high-melt transition zone between clean and debris-covered ice. In this zone, thin debris cover is thought to increase ablation compared to clean ice, but often this cover is patchy rather than continuous. There is a need to understand ablation and debris dynamics in this transition zone to improve the accuracy of ablation models and the predictions of future debris cover extent. To quantify the ablation of partially debris-covered ice (or ‘dirty ice’), a high-resolution, spatially continuous ablation map was created from repeat unmanned aerial systems surveys, corrected for glacier flow in a novel way using on-glacier ablation stakes. Surprisingly, ablation is similar (range ~ 5 mm w.e. per day) across a wide range of percentage debris covers (~ 30–80%) due to the opposing effects of a positive correlation between percentage debris cover and clast size, countered by a negative correlation with albedo. Once debris cover becomes continuous, ablation is significantly reduced (by 61.6% compared to a partial debris cover), and there is some evidence that the cleanest ice (<~ 15% debris cover) has a lower ablation than dirty ice (by 3.7%). High-resolution feature tracking of clast movement revealed a strong modal clast velocity where debris was continuous, indicating that debris moves by creep down moraine slopes, in turn promoting debris cover growth at the slope toe. However, not all slope margins gain debris due to the removal of clasts by supraglacial streams. Clast velocities in the dirty ice area were twice as fast as clasts within the continuously debris-covered area, as clasts moved by sliding off their boulder tables. These new quantitative insights into the interplay between debris cover characteristics and ablation can be used to improve the treatment of dirty ice in ablation models, in turn improving estimates of glacial meltwater production. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

11.
The mechanism of bridge pier scour becomes more complex in the presence of debris accumulation upstream of the pier. While using countermeasures may be effective in reducing scour, their efficacy could be undermined in such a situation. The current study investigates the effectiveness of using a collar in the presence of different types of floating debris accumulation in reducing scour around a cylindrical bridge pier with non-cohesive bed sediment. The experimental results reveal that using a c...  相似文献   

12.
Gray's Reef National Marine Sanctuary (GRNMS) is an increasingly popular site for recreational fishing and diving in the South Atlantic Bight (SAB). As a result, there has been heightened concern about potential accumulation of marine debris and its consequent effects on sanctuary resources. Field surveys were conducted at GRNMS in 2004 and 2005 to provide a spatially comprehensive characterization of benthic communities and to quantify the distribution and abundance of marine debris in relation to bottom features. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than other bottom types. On ledges, the presence and abundance of debris was significantly related to observed boating activity and physiographic features including ledge height, ledge area, and percent cover of benthic organisms. The results from this study will aid managers in optimizing cleanup efforts and long-term monitoring of debris accumulation patterns at GRNMS and other hard bottom areas in the SAB.  相似文献   

13.
Post-fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post-fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post-fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post-fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post-fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post-fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre-fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post-fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post-fire sediment pulses are transported through watersheds. Our models allow for improved pre- and post-fire risk assessments across diverse ranges of watersheds in the IMW.  相似文献   

14.
The worlds’ oceans contain a large but unknown amount of plastic debris. We made daily collections of marine debris stranded at two sub-Antarctic islands to establish (a) physical causes of strandings, and (b) a sampling protocol to better estimate the oceans’ plastic loading. Accumulation rates at some beaches were dependent on tide and onshore winds. Most of the 6389 items collected were plastic (Macquarie 95%, Heard 94%) and discarded or lost fishing gear comprised 22% of those plastic items. Stalked barnacles (Lepas spp.) were a regular attachment on Macquarie debris but not at Heard Island. The daily accumulation rate of plastic debris on Macquarie Island was an order of magnitude higher than that estimated from monthly surveys during the same 4 months in the previous 5 years. This finding suggests that estimates of the oceans’ plastic loading are an order of magnitude too low.  相似文献   

15.
Debris cover on glaciers is an important component of glacial systems as it influences climate–glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw and rock faces freshly exposed by glacier downwasting in accumulation zones result in increased rockfall activity and debris input. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris. Glacier debris cover thus represents a clear signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 glaciers using Landsat data at three time steps. We applied a ratio-based threshold classification technique and analysed glacier catchment characteristics to understand debris sources better. Across the Austrian Alps, debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated in response to climate warming. Debris cover distribution shows significant regional variability, with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of the mean elevation of debris cover on glaciers in Austria. The debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared with other mountain areas. The study indicates that, if this trend continues, many glaciers in Austria may become fully debris covered. However, since debris cover seems to have little impact on melt rates, this would not lead to prolonged existence of debris-covered ice compared with clean ice glaciers.  相似文献   

16.
每年汛期与蓄水期三峡水库近坝段水域会有大量漂浮物聚集,为探索三峡水库近坝段水域(坝前及以上约12.7km长的河段)水面漂浮物对水质的影响,2018年开展了漂浮物覆盖水体水质跟踪监测和漂浮物浸泡试验,并以20142018年的漂浮物产量和近坝段水域水质监测数据为基础进行了相关分析与回归分析.结果表明:漂浮物会提高坝前覆盖水体的氮类营养盐水平和有机污染物浓度,引起河湾漂浮物覆盖水域氨氮(NH3-N)浓度升高,致使氮类营养盐组成的变化和由于高锰酸盐指数/总有机碳比值(COD_(Mn)/TOC)的差异变化对水体产生有机污染.除NH_3-N外,坝前水域受漂浮物影响程度大于河湾区域,漂浮物对河湾水质的影响在蓄水期更为明显,漂浮物覆盖水体垂直方向上2 m内水质因子无明显分层现象;相比综合类漂浮物,植物类漂浮物对水质的影响更迅速和明显;漂浮物仅在其覆盖的水体小范围内对氮类营养盐指标造成影响,漂浮物产量的增加会增大近坝段水域水体悬浮物、有机污染物和还原性无机物质(COD_(Mn))浓度,形成一定的影响规律.因此,合理布置清漂作业点,高效及时地开展漂浮物清理工作,短期内优先打捞植物类漂浮物,合理实施水库调度以减少漂浮物聚集量与缩短滞留时长,加强漂浮物影响水体的水质监测对近坝区河段水环境保护意义重大.  相似文献   

17.
The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.  相似文献   

18.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

19.
Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.  相似文献   

20.
For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号