首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea (SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou (QZ) Strait. In both cases, coastal trapped waves (CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS (near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave (ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.  相似文献   

2.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

3.
为了合理有效地分析和挖掘海洋涡旋移动数据中的规律和模式,本文以基于空间交互性流聚类的区域化方法为基础,提出了一种海洋涡旋移动特征的网格区域化方法。该方法以网格为统计单元,对涡旋移动数据进行组织,通过图论模型构建海洋涡旋的移动网络图,然后采用基于平均邻接的层次聚类和基于模块度的划分2个步骤,实现涡旋移动特征的区域划分。基于该算法,对1992-2011年中国南海海洋涡旋移动数据进行算法实验,结果表明,南海海洋涡旋按照其移动频繁性特征可分为越南东南部(R1)、越南东部-巴拉望岛(R2)、南海北部(R3)3个区域。其中,R1区域包含了南海西南部深海盆地区的涡旋活跃条带;R2区域体现了南海中部涡旋向西移动的活动规律;R3区域则包含了南海北部东北-西南走向条带。3个区域内冷涡和暖涡具有明显的季节性变化特征:R1和R3区域冷暖涡变化相似,暖涡在夏秋季移动最多,冬季最少,而冷涡则相反,夏秋季移动最少,随后逐渐增加,并在春季达到峰值;R2区域暖涡在春季移动最多,而冷涡在夏冬移动最多,春秋移动相对较弱。  相似文献   

4.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

5.
基于海表面温度数据和海面高度异常数据,采用矢量几何法提取南海的中尺度涡旋并进行统计分析。结果显示,从海表面温度和海面高度异常数据都可以提取涡旋,两者的提取能力差异很小。由海表面温度数据可以提取较小尺度的涡旋,但跟踪涡旋时存在不稳定性;由海面高度异常数据虽然不能检测到较小尺度的涡旋,但跟踪涡旋相对稳定。两种数据所提取涡旋的时间和空间分布规律具有一致性。  相似文献   

6.
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.  相似文献   

7.
2008年“威马逊”台风期间海上大气波导时空特征   总被引:1,自引:0,他引:1  
结合 MM5数值模拟结果、天气图和卫星云图,系统分析了2008年“威马逊”台风引起的大气波导特征.本次台风过程中发生的大都为悬空大气波导,位于台风涡旋之外的西北部,台风越近波导高度、强度、厚度越大;同时数值模拟表明陆地地形对海上本次大气波导形成具有一定影响.利用大气波导这一特殊大气层结可以很好的评估和预测电磁波传播和海上探测通信系统  相似文献   

8.
Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coastal regions east and southeast of Vietnam (UESEV), east and southeast of Hainan Island (UESEH), and southeast of Guangdong province (USEG). It is shown that the Ekman transport due to alongshore winds and Ekman pumping due to offshore wind stress curl play different roles in the three upwelling systems. In UESEV, Ekman pumping and Ekman transport are equally important in generating upwelling. The Ekman transport increases linearly from 0.49 Sv in May to 1.23 Sv in August, while the Ekman pumping increases from 0.36 to 1.22 Sv during the same period. In UESEH, the mean estimates of Ekman transport and Ekman pumping are 0.14 and 0.07 Sv, respectively, indicating that 33% of the total wind-driven upwelling is due to Ekman pumping. In USEG, the mean Ekman transport is 0.041 Sv with the peak occurring in July, while Ekman pumping is much smaller (0.003 on average), indicating that the upwelling in this area is primarily driven by Ekman transport. In the summers of 2003 and 2007 following El Niño-Southern Oscillation (ENSO) events, both Ekman transport and Ekman pumping decrease in UESEV due to the abnormally weak southwest monsoon. During the same events, however, Ekman transport is slightly enhanced and Ekman pumping is weakened in UESEH and USEG.  相似文献   

9.
Data from satellite altimetry and in situ observations together with the Hybrid Coordinate Ocean Model(HYCOM)reanalysis data were used to investigate the mechanism and formation of an anticyclonic eddy in the northeastern South China Sea(SCS).Analysis of water mass using cruise data indicated that the water captured in the eddy differs from those in the SCS,the Kuroshio intrusion,and the eddy-forming region.Data from sea surface height(SSH)and sea level anomaly(SLA)indicate that the eddy formed due both to the Kuroshio intrusion and the local circulation in the SCS.The Kuroshio intrusion is present at the start of the eddy growth(March 5-9)before Kuroshio leaps the Luzon Strait.The eddy then becomes larger and stronger in the absence of the Kuroshio intrusion.From the eddy budget of the HYCOM reanalysis data,the formation of the eddy goes in three steps.By the third step,the eddy had become affected by variations of local SCS circulation,which is more strongly than in the first step in which it is affected more by the Kuroshio intrusion.The variability of the temperature and salinity inside the eddy provide a support to this conclusion.The water in the SCS intruded into the eddy from the southeast,which decrease the salinity gradually in the southern part of the eddy during the growth period.  相似文献   

10.
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of ~600 km and a southwestward phase speed of ~0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.  相似文献   

11.
Typhoon Durian (2001),which formed over the South China Sea (SCS),was simulated by using the Weather Research and Forecasting (WRF) model. The genesis of typhoon Durian which formed in the monsoon trough was reproduced by numerical simulations. The simulated results agree reasonably well with observations. Two numerical experiments in which the sea surface temperature (SST) was either decreased or increased were performed to investigate the impact of the SST on the genesis of the ty-phoon. When the SST was decreased by 5℃ uniformly for all grids in the model,the winds calculated became divergent in the lower troposphere and convergent in the upper troposphere,creating conditions in which the amount of total latent heat release (TLHR) was low and the tropical cyclone (TC) could not be formed. This simulation shows the importance of the convergence in the lower tropo-sphere and the divergence in the upper troposphere for the genesis of the initial vortex. When the SST was increased by 1℃ uni-formly for all grids,a stronger typhoon was generated in the results with an increase of about 10 m s-1 in the maximum surface wind speed. Only minor differences in intensity were noted during the first 54 h in the simulation with the warmer SST,but apparent dif-ferences in intensity occurred after 54 h when the vortex began to strengthen to typhoon strength. This experiment shows that warmer SST will speed the strengthening from tropical storm strength to typhoon strength and increase the maximum intensity reached,while only minor impact can be seen during the earlier stage of genesis before the TC reaches the tropical storm strength. The results sug-gest that the amount of TLHR may be the dominant factor in determining the formation and the intensification of the TC.  相似文献   

12.
At the interface between the lower atmosphere and sea surface, sea spray might significantly influence air-sea heat fluxes and subsequently, modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model, to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area, for the cases of two real typhoons from 2006, Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory (KEO), and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without, and that sea spray can enhance the heat fluxes (especially latent heat flux) considerably during a typhoon passage. Consequently, the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally, results from the simulation of the passage of typhoon Soulik (that passed KEO quickly), which included the sea spray effect, were better than for the simulated passage of typhoon Yagi (that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.  相似文献   

13.
INTRODUCTIONTheSouthChinaSea (SCS)isasemi enclosedoceanbasinlocatedataspecialgeographicpo sition ,oneoftheworld’spronouncedmonsoonregions,withnortheastwindsprevailinginwinterandsouthwestwindsinsummer,andisacrucialregionofintensiveair seainteractionofgreat…  相似文献   

14.
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the southern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme H s values is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.  相似文献   

15.
High-resolution seismic profiles and surface samples were studied in detail in order to determine the structures, provenance, and dynamic mechanisms of a fine-grained deposit in the southeast coastal area of the Liaodong Peninsula, China. Results indicate that there is a prominent fine-grained deposit distributed alongshore up to 14 m thick, which thins out to less than 2 m in both seaward and landward directions, forming an Ω-shaped pattern of cross-section. The deposit is 180–300 km away from the Yalu River mouth and extends along the southeast coast of the Liaodong Peninsula between the northeast of Dalian Bay and southwest of the Changshan Islands, in water depths of 20–40 m. The deposit, which is mainly derived from the Yalu River, represents a Holocene Highstand System Tract sequence formed since the highest sea level around 7.0 ka. The Yalu River-derived sediments were redeposited in the area off the southeast coast of the Liaodong Peninsula after resuspension and transportation by the Liaonan Coastal Current.  相似文献   

16.
Typhoons are one of the most serious natural disasters that occur annually on China's southeast coast.A technique for analyzing the typhoon wind hazard was developed based on the empirical track model,and used to generate 1 000-year virtual typhoons for Northwest Pacific basin.The influences of typhoon decay model,track model,and the extreme value distribution on the predicted extreme wind speed were investigated.We found that different typhoon decay models have least influence on the predicted extreme wind speed.Over most of the southeast coast of China,the predicted wind speed by the nonsimplified empirical track model is larger than that from the simplified tracking model.The extreme wind speed predicted by different extreme value distribution is quite different.Four super typhoons Meranti(2016),Hato(2017),Mangkhut(2018),and Lekima(2019) were selected and the return periods of typhoon wind speeds along the China southeast coast were estimated in order to assess the typhoon wind hazard.  相似文献   

17.
The South China Sea (SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure (PCS) response to the upwelling remains inadequate. In January 2014, the upwelling simulation experiment was performed in the western SCS. Results indicate that the nutrient-rich bottom water not only increased the total Chlorophyll a (Chl a) concentrations, but would potentially altered the PCS. Due to new nutrients added, microphytoplankton had more sensitivity response to nutrient uptake than other phytoplankton groups. The variation of nutrients induced by formation, weakening and disappearance of upwelling resulted in phytoplankton species succession from cyanophyta to bacillariophyta. It may be the leading factor of the changes in PCS and size-fractionated Chl a. The initial concentration of DIP less than 0.1 μmolL?1 could not sustain the phytoplankton growth. This indicates that phosphorus may be the limiting factor in the western SCS.  相似文献   

18.
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.  相似文献   

19.
Based on the 18-year(1993–2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature(SST) and simple ocean data assimilation datasets,this study investigated the patterns of the SST anomalies(SSTAs) that occurred in the South China Sea(SCS) during the mature phase of the El Ni?o/Southern Oscillation.The most dominant characteristic was that of the outof-phase variation between southwestern and northeastern parts of the SCS,which was influenced primarily by the net surface heat flux and by horizontal thermal advection.The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during El Ni?o episodes.Conversely,it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during El Ni?o episodes led to the development of the positive SSTA in the southwestern SCS.  相似文献   

20.
We studied diatom distribution from 62 samples from the uppermost 1 cm of sediment in the South China Sea (SCS), using grabs or box corers in three cruises between 2001–2007. Fifty six genera, 256 species and their varieties were identified. Dominating species included Coscinodiscus africanus, Coscinodiscus nodulifer, Cyclotella stylorum, Hemidiscus cuneiformis, Melosira sulcata, Nitzschia marina, Roperia tesselata, Thalassionema nitzschioides, Thalassiosira excentrica, and Thalassiothrix longissima. Most surface sediments in the SCS were rich in diatoms, except for a few coarse samples. Average diatom abundance in the study area was 104 607 valve/g. In terms of the abundance, ecology, and spatial distribution, seven diatom zones (Zones 1–7) were recognized. Zone 1 (northern continental shelf) is affected by warm currents, SCS northern branch of the Kuroshio, and northern coastal currents; Zone 2 (northwestern continental shelf) is affected by intense coastal currents; Zone 3 (Xisha Islands sea area) is a bathyal environment with transitional water masses; Zone 4 (sea basin) is a bathyal-to-deep sea with stable and uniform central water masses in a semi-enclosed marginal sea; Zone 5 (Nansha Islands marine area) is a pelagic environment with relatively high surface temperature; Zone 6 (northern Sunda Shelf) is a tropical shelf environment; and Zone 7 (northern Kalimantan Island shelf area) is affected by warm waters from the Indian Ocean and coastal waters. The data indicate that these diatom zones are closely related to topography, hydrodynamics, temperature, nutrients and especially the salinity. Better understanding of the relationship between diatom distribution and the oceanographic factors would help in the reconstruction of the SCS in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号