首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg同位素体系被证明在示踪硅酸盐矿物风化方面颇具优势.通过总结近年来大陆硅酸盐风化过程中Mg同位素地球化学的研究,归纳出以下认识:①化学风化方面,原生矿物溶解使得液相的Mg同位素组成变轻,而固相残留的Mg同位素组成变重;次生矿物中含有两种形态的Mg(交换态Mg和结构态Mg),二者δ26Mg不同,次生矿物形成过程中Mg同位素分馏方向与矿物种类、结构和形成机制等因素有关;黏土矿物吸附和解吸Mg2+引起Mg同位素分馏,但方向尚不确定;土壤可交换复合物倾向于优先吸附和解吸26Mg.②物理风化方面,水流、风等造成的矿物分选会引起风化产物Mg同位素组成发生变化.③植物—土壤体系Mg同位素的分馏很小.目前,大陆硅酸盐风化中一些重要过程的Mg同位素地球化学行为还存在争议,亟待通过室内试验、模拟计算,以及与其他同位素联用等途径完善理论基础,推动Mg同位素在示踪大陆风化中的广泛应用.  相似文献   

2.
刘飞翔  尹新雅  刘琪 《矿物学报》2021,41(2):127-138
气候变化与大气二氧化碳浓度息息相关.大陆岩石圈风化是影响大气二氧化碳浓度的重要过程.通过还原陆壳古风化信息,我们可以有效地了解地球气候条件的演化历史.传统方法上,前人曾使用锶同位素示踪大陆风化,但其解释尚有不足.例如,海水锶同位素比值会受到海洋热液的影响,而河流锶同位素比值则易受风化岩石类型的影响.此外,只有硅酸盐风化被认为在长时间尺度控制着大气碳汇,但锶的碳酸盐风化却与硅酸盐风化很难分辨.因此,我们需要一种更理想的同位素体系作为示踪大陆风化历史的介质.锂,作为微量元素,主要集中在岩石圈的硅酸盐矿物中,在碳酸盐岩含量较少.所以,硅酸盐风化可以使用锂同位素予以记录.同时,锂同位素受生物分馏效应影响较小,可以在海相碳酸盐岩中保存良好.这些优势为海相碳酸盐岩的锂同位素信号示踪大陆风化历史提供了有力支撑,但我们仍需对风化、迁移和结晶等过程的锂同位素地球化学行为有清晰的认识.为此,本文回顾不同储库的锂同位素组成以及各物相间锂元素配分和同位素分馏特征,总结了近年来锂同位素在重建大陆风化历史方面的进展,并详述了有待解决的关键问题.  相似文献   

3.
本研究选择中国东部主要的花岗岩分布区中位于中温带、暖温带和热带的8个花岗岩风化壳作为研究对象,对比研究了不同气候环境下花岗岩风化过程中稀土元素(REE)的分布规律及其演化特征。结果表明,各气候带的花岗岩风化壳的REE分布具有一定的共性规律,风化产物的REE总量相对基岩都有不同程度的富集,且都表现出轻稀土(LREE)相对重稀土(HREE)富集以及一定程度的Eu负异常。由于REE的迁移和淋滤,导致其在风化壳内的再分配。通常REE在半风化层富集,p H值和粘土矿物含量等内因变化是导致这一现象的主要因素。对于少数表层REE富集的现象,如SD-DG、HN-3剖面,气候环境与地质条件等外因则是这一现象的主导因素。受海洋性气候影响显著的风化壳(QHD-1,HN-3),以基岩为标准,容易发生HREE富集的轻、重稀土分异的现象。大部分花岗岩风化壳中,Ce通常在剖面上部出现正异常,而在下部出现与之互补的Ce负异常。  相似文献   

4.
大陆风化过程的锂同位素地球化学研究进展   总被引:3,自引:0,他引:3  
锂同位素在地质学、地球化学研究中有着广阔的应用前景,大陆风化过程的锂同位素地球化学研究已经成为近年来国际上研究的热点,在过去十多年发展快速,并取得一批优异研究成果。系统综述了本领域国内外近年来的主要研究思路,各研究方向的主要进展,并在此基础上提出现阶段存在的问题。主要研究方向包括流域尺度大空间范围的总体研究、风化壳剖面的精细研究以及实验室内的模拟研究,均涉及水/岩作用过程的锂同位素分馏机理研究。现有研究结果有的需要进一步论证,有的相互之间存在矛盾,还有部分结论不能自圆其说,因此还需要进一步开展深入细致的研究工作。  相似文献   

5.
6.
锂同位素被广泛应用于地球与行星科学各个领域,准确测定锂同位素比值是示踪各种自然过程的前提,但目前国际实验室报道的锂同位素标准物质测定值存在较大偏差,例如已报道的海水δ7Li测试值相差5‰。针对这一现状,本文基于离子交换理论基础,使用正态分布函数拟合淋出曲线,通过理论计算得到离子交换纯化过程造成的锂同位素分馏的理论值,该数值与MC-ICP-MS检测无关,但对锂同位素测试准确度有直接的影响。在此基础上,定义相对回收率(Rc)用于监测锂同位素分馏。基于本实验室分离纯化流程,通过理论计算得出,当Rc 99. 8%时,可认为离子交换纯化过程中没有引起可观察到的锂同位素分馏,进而不影响MC-ICP-MS检测准确度。目前世界上各实验室主要通过绝对回收率或Rc来判断分离过程中是否发生同位素分馏。由于测试的空间电荷效应,绝对回收率易被高估,而 99%的Rc并未全部达到理论计算得到的Rc,表明各实验室对同种标准物质测试结果的偏差极可能是由于离子交换纯化过程中锂同位素分馏导致的。本文提出,对于每一样品,只需要分别测量离子交换过程中接收区间及其前后一定区间溶液中锂含量,将得到的Rc值与其理论值比较,即可判断分离纯化过程中是否引起可观察到的锂同位素分馏。  相似文献   

7.
地壳风化系统中的Sr同位素地球化学   总被引:10,自引:0,他引:10  
马英军  刘丛强 《矿物学报》1998,18(3):350-358
近20年来,人们利用Rb-Sr同位素体系对地表-近地表地球化学过程、尤其是水圈-岩石圈之间化学物质的循环进行了广泛而深入的研究。大陆地壳风化物质以及地表径流的Sr同位素组成变化揭示了不同流域盆地的地质背景和风化作用的特征。古海洋的Sr同位素组成变化则是地壳和地幔演化以及不同地质历史时期壳-幔相互作用的共同结果。本文对地壳风化系统Sr同位素地球化学研究的全面而详细的综述表明,Rb-Sr同位素体系仍将是研究地壳风化、水圈-岩石圈之间化学物质循环的重要手段,根据古海水及其化学沉积物的Sr同位素记录研究壳-幔演化和地球圈层演化过程中的物质循环特征以及地表古环境变化将是本研究领域的重点。  相似文献   

8.
大兴安岭中部中生代花岗岩成因和构造背景的确定对讨论该地区及东北地区中生代构造-岩浆演化具有重要意义。乌兰浩特地区中生代花岗岩详细的岩石地球化学及Hf、Nd同位素的研究表明:研究区中晚三叠世查干岩体是A2型花岗岩;早中侏罗世景阳岩体为I型花岗岩,而大石寨岩体是具有特殊稀土元素四分组效应的花岗岩;早白垩世花岗岩体可根据其Sr含量划分为高Sr和低Sr两类,它们具有相同或相似的源岩组成,但其起源深度不同。其中高Sr型花岗岩类似于C型埃达克质花岗岩,起源于压力较高的下地壳,而低Sr型及永和屯花岗岩则是起源于压力较低的中地壳的高分异Ⅰ型花岗岩。全岩Nd和锆石Hf同位素特征及前人的研究结果显示,乌兰浩特地区花岗岩类岩石的源区主要为显生宙新增生的年轻地壳物质,并有老的地壳物质的贡献,并且随着花岗岩侵位时间的逐渐变新,锆石的εHf(t)值逐渐减小,认为地幔上涌导致岩浆底侵以及老地壳物质的折返是造成下地壳源岩组成复杂的原因。  相似文献   

9.
苏州A型花岗岩氢氧同位素地球化学研究   总被引:6,自引:2,他引:6  
魏春生  郑永飞 《岩石学报》1999,15(2):224-236
对苏州A型花岗岩氢氧同位素组成进行了系统深入的研究,其全岩δ18O值为+3.5‰~+9.2‰,全岩δD值在-81‰~-59‰之间变化。主要造岩矿物对保持氧同位素平衡分馏的样品,其D亏损主要受单阶段岩浆去气机理的制约。部分全岩样品表现出不同程度D-18O同步亏损,这种亏损要受岩浆期后固相线下与外来渗透大气降水之间进行同位素交换机理的制约。石英δ18O值基本正常,石英与碱性长石之间氧同位素不平衡分馏特征表明,苏州A型花岗岩整体上起源于亏损18O源区物质通过地球动力学再循环产生低δ18O岩浆的可能性不大。根据氢氧同位素实测值和理论模型计算结果,推测苏州A型花岗岩浆δD和δ18O初始值分别为-50±5‰和7.5±1.0‰,这排除了岩浆起源于曾经历过化学风化循环的地壳上部岩石的可能性。  相似文献   

10.
锂同位素在环境地球化学研究中的新进展   总被引:4,自引:0,他引:4  
锂的两个稳定同位素(6Li和7Li)相对质量差较大,因此易产生明显的同位素分馏。业已查明,自然界中δ7Li值的变化在-40‰和 50‰之间。其中较小的δ7Li值见于海相生物碳酸盐样品,较大的δ7Li值见于某些盐湖卤水以及有孔虫的样品。由于明显的同位素分馏和不同地质体中截然不同的δ7Li值,锂同位素应用十分广泛,且在壳-幔演化、陆壳风化、卤水和污染水体示踪等研究领域取得显著成效。  相似文献   

11.
青岛崂山晶洞碱性花岗岩同位素地球化学研究   总被引:8,自引:1,他引:8  
青岛崂山晶洞碱性花岗岩Rb-Sr全岩等时线年龄为134Ma,I_(Sr)=0.7064;石英正长岩和黑云母花岗岩t=146Ma。I_(Sr)=0.7050。青岛岩基全岩的δ~(18)O值为4.8至8.2‰,δD值为-98至-145‰,H_2O含量为0.59至0.07wt%。大气降水热液-岩石相互作用和岩浆开放体系去气作用是造成晶洞碱性花岗岩~(18)O和D贫化的重要原因。  相似文献   

12.
铝土矿是极端风化作用的产物,也是锂的重要载体,由于其资源量巨大,对铝土矿中锂的富集机制和分布规律的研究将有利于找矿预测。锂同位素的高效准确分析是深入认识矿物中锂的富集机制和分布规律的基础。铝土矿样品由于化学稳定性较强,溶样过程较为复杂,且Al、Na、Ca、K等基体元素含量远高于锂,给锂的纯化增加不少难度。本文采用内径5mm、柱长190mm的聚四氟乙烯离子交换柱和AG50W-X12阳离子交换树脂,以0.5mol/L硝酸为淋洗液淋洗34mL,收集最后的12mL,即可完成对铝土矿中锂的完全纯化回收。该纯化方法减少了淋洗液的使用量,提高了实验效率。采用该方法对国际标样L-SVEC、RGM-2、GSP-2进行锂的纯化,通过多接收电感耦合等离子体质谱仪(MC-ICP-MS)测试锂同位素组成,得到的δ~7Li测试值分别为-0.26‰±0.09‰(2SD,n=3)、3.19‰±0.37‰(2SD,n=3)、-0.78‰±0.22‰(2SD,n=3),与前人报道一致,验证了该方法的可靠性。此外,采用本方案对铝土矿国家标样(GBW07182)进行锂的纯化,δ~7Li测定值为10.16‰±0.21‰(2SD,n=3)。  相似文献   

13.
长江流域河水和悬浮物的锂同位素地球化学研究   总被引:8,自引:1,他引:8  
深入理解流域侵蚀过程中的锂同位素分馏对于运用锂同位素来示踪化学循环和气候变化是十分必要的。研究集中在长江干流和主要支流的水体和悬浮物的锂及锂同位素组成。长江流域水体的锂及锂同位素组成(δ7Li)分别为150~4 570 nmol/L和+7.6‰~+28.1‰,两者沿上游至下游的变化趋势相反。悬浮物锂同位素组成(δ7Li)变化比较稳定,分别为41~92 μg/g和-4.7‰~+0.7‰,而且总是低于相应水体的锂同位素组成。悬浮物和流体之间的锂同位素分馏系数在0.977和0.992之间,与悬浮物的量及组成存在明显相关性,反映了粘土矿物的吸附和化学风化的程度。锂含量与锂同位素组成之间良好的负相关性表明流域水体的锂来自2个端元混合:其一可能是蒸发盐岩,并伴有深部热泉水;其二可能是硅酸岩。  相似文献   

14.
15.
华南花岗岩风化壳稀土元素地球化学研究   总被引:12,自引:2,他引:12  
花岗岩中的稀土元素在风化淋滤作用下发生富集和分异,形成REE的天然离子色谱层。REE在风化壳中富集分异受风化壳发育程度、花岗岩原岩中REE含量及其分布和分配的影响。酸性淋滤作用是风化壳剖面上REE富集分异的主要控制因素。  相似文献   

16.
广东阳春盆地花岗岩类同位素,微量元素地球化学研究   总被引:2,自引:0,他引:2  
对阳春盆地3个花岗岩类岩体进行了年龄测定,岗尾岩体和锡山岩体的黑云母K-Ar稀释法年龄平均值分别为156×10^6和76×10^6a,石录岩体花岗闪长岩中黑云母,钾长石和斜长石等单矿物^40Ar/^39Ar坪年龄平均值为100×10^6a,马山岩体,岗尾央体和石录岩体的锶同位素初始比值分别为0.7040,0.7064和0.7089,它们均属于壳幔混合型花岗岩类,根据微量元素判别,锡山岩体花岗岩是壳  相似文献   

17.
青藏高原中新生代花岗岩Sr、Nd同位素研究   总被引:12,自引:2,他引:12  
青藏高原中新生代岩浆活动强烈,本文报道青藏高原西部中新生代代表性花岗岩的Sr,Nd同位素测定结果,结合前人已发表的东部地区花岗岩同位素资料,初步探讨了青藏高原地区中新生代花岗岩的Sr,Nd同位素组成、物质来源与成因.研究表明,分布于冈底斯地块北南边界(即冈底斯花岗岩北带和南带)与洋壳俯冲有关的燕山晚期花岗岩,具有低87Sr/86Sr初始值(小于0.706)、正εNd(t)值和年轻的t2DM模式年龄的特征,岩浆来源于俯冲洋壳的熔融;与陆-陆碰撞及碰撞后有关的冈底斯花岗岩87Sr/86Sr初始值变化大(0.706~0.719),而εNd(t)值和t2DM都在很小范围变化,Sr、Nd同位素组成似乎与时代、岩性无关,说明壳幔混合花岗岩的同位素源区长时期保持相对均一.无洋壳物质参与的通过陆内俯冲作用形成的喜马拉雅区花岗岩,具有高87Sr/86Sr初始值(大于0.720)、古老模式t2DM年龄(1 792~2 206 Ma)和低εNd(t)值(-10.3~-16.3)特征,并与基底岩石的Sr,Nd组成一致,岩浆源区为壳源.由此说明花岗岩类及其岩石组合的形成主要取决于深部部分熔融物质的成分,不同火成岩组合的差异反映了青藏高原岩石圈组成和演化的不均一性.  相似文献   

18.
陈丽丽  程志国 《中国地质》2016,(4):1189-1199
杜尔基花岗岩基位于大兴安岭中南段,且处在大兴安岭一个大型多金属矿集区(Au-Ag-Cu-Zn-Sn-Fe)中。区内岩浆活动复杂,成矿元素多样,其中,杜尔基花岗岩是本地区出露面积较大(约190 km2)的岩体之一。为厘清区内不同花岗质岩石的源区特征及其与成矿的关系,文章对杜尔基地区花岗岩的主要岩性单元二长花岗岩和正长花岗岩进行了系统的矿物学和Hf同位素组成研究。结果表明:二长花岗岩的主要矿物为斜长石(32%)、钾长石(45%)、石英(20%),次要矿物为黑云母、角闪石和辉石等暗色矿物(3%);正长花岗岩的主要组成矿物为石英(10%~15%)、钾长石(60%~70%)和斜长石(30%),次要矿物为黑云母(5%),在这两种花岗岩中均广泛发育条纹长石。黑云母主要为铁质黑云母和铁叶云母,角闪石为韭闪石和普通角闪石,辉石为普通辉石。矿物学特征均指示杜尔基花岗岩主要为I型花岗岩。二长花岗岩εHf为-1.6~17.6,正长花岗岩εHf为-3.3~12.2。杜尔基花岗岩Hf同位素特征指示其源区为新生的地壳物质,可能是来自地幔的底侵玄武质岩浆发生重熔的结果。  相似文献   

19.
华南花岗岩风化壳中稀土元素地球化学及矿石性质研究   总被引:27,自引:2,他引:27  
池汝安  徐景明 《地球化学》1995,24(3):261-269
华南稀土花岗岩风化壳主要可分为腐值层、全风化层和半风化层。在岩石的风化淋滤过程中,稀土以水合或羟基水合离子吸附在全风化层中的主要矿物埃洛石和高岭石等粘土矿物上。这些层状粘土矿物具有取代结构和断面余键两个吸附活性中心。量子化学计算表明两个吸附活性中心对不同稀土的吸附能力为:La^3+〉Ce^3+〉Pr^3+〉Nd^3+〉Sm^3+〉Eu^3+〉Gd^3+〉Tb^3+〉Dy^3+〉Ho^3+〉Y^3+  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号