共查询到20条相似文献,搜索用时 8 毫秒
1.
充分挖掘车载激光扫描系统获取地物点云三维空间信息、回波强度信息,提出一种基于体元空间特征分析的行道树提取方法。首先完成原始数据预处理提取道路附属物点云数据,建立三维体元结构;以体元结构为基本单元计算体元单元中点云回波强度、曲率特征,后分析邻域范围内体元特征联系,构建体元邻域特征描述规则,提取行道树树干结构;在树干结构提取的基础上,确定行道树位置,建立冠层投影面积模型,进而提取冠层结构。实验结果提取显示:在复杂道路场景下,算法具有一定的稳健性,能够较为完整地提取道路两侧行道树信息。 相似文献
2.
3.
针对道路车载激光扫描点云数据中行道树与其他地物相互遮掩,存在杆状物分类困难的情况,本文提出了一种基于车载激光扫描数据的行道树自动提取方法。首先,构建格网并地形点云滤波,提取非地面点,从而提升后续算法的运算效率;其次,在非地面点的基础上构建空间体元进行邻域分析,提取树干点云,同时建立树冠分层点云投影面积理论,提取得到树冠点云;最后,使用改进分割算法进一步修正树冠点云归属,实现行道树的单体化。使用两组不同类型道路点云数据进行实验,结果显示本文算法提取行道树的平均提取完整率与正确提取率分别为90.73%、91.22%,较对比方法具有一定优势,为行道树的高效、快速、准确提取提供了新的思路。 相似文献
4.
针对车载LiDAR数据构建格网,提取行道树点云并分割树干点云,首先以格网为单位,进行滤波处理提取非地面点云;再对提取的点云进行降噪处理;然后基于格网对处理后的点云块进行聚类,依据行道树与其他地物的形态以及投影等差异从聚类单元中提取行道树,并对相连树进行分割;最后针对提取的单株行道树依据分层投影的原理,分割行道树树干点云与树冠点云.采用一段车载LiDAR数据进行算法实验并与人工提取方式对比验证算法提取的有效性与准确性. 相似文献
5.
6.
城市行道树三维信息是城市智慧管理的重要基础信息之一,本文研究了一种基于车载激光点云数据的行道树三维信息自动提取方法。首先,根据行道树点云和周围地面点计算树高;然后,针对残缺树冠点云,应用点云不同方位距离对比计算冠幅;最后,根据树干扫描分层点云,运用RANSAC算子拟合圆模型,计算胸径。通过实际测量数据进行验证,本文方法提取出的行道树信息误差较小,精度较高。 相似文献
7.
本文首先结合密度和格网化划分的思想改进DBSCAN算法,对行道树点云进行单体化形成若干连接簇;然后接着对相连行道树进行检测并在传统基于距离的分割方法的基础上引进权值思想对树冠点云的归属进行进一步修正,这样可以更加适用于各大小类型行道树,最终完成单体化;最后采用分层投影的方式对单棵树的点云分布状态进行分析判断,实现行道树位置、树干高、冠幅、胸径的几何属性的自动提取。 相似文献
8.
针对全景江苏三维地理场景建设中的可量测街景数据采集时,由于点云数据稀疏或缺失造成量测可靠性及精度低的问题,探索出以地面激光点云为数据补充,通过坐标转换、点云融合等技术方法加密补偿稀疏点云,提高数据精度的技术路线.最后,以具体道路为例,验证了方法的可行性,为提高车载三维激光点云的应用精度和能力提供了可借鉴的依据. 相似文献
9.
10.
测绘技术硬件、软件技术的发展为三维地理空间数据的高效获取提供了有效便捷,随着测绘新技术的发展与成熟,为实景三维中国、新型基础设施建设等提供重要支撑。基于此,本文基于移动车载激光扫描点云数据,研究并提出一种道路交通指示标志检测方法,提升道路交通指示标志检测效果,探索智能化测绘的实际应用。首先,按照车载激光扫描系统采集车载点云数据时,存储的扫描点反射角度,构造双向扫描线索引,按照扫描线上车载点云数据的空间分布特征,通过移动动态窗口分类交通指示标志与其余地物车载点云数据;其次,通过Canny边缘检测算法,在交通指示标志车载点云数据内,提取交通指示标志边缘信息;最后,在双线性卷积神经网络内输入交通指示标志边缘信息,提取交通指示标志特征,结合支持向量机,输出交通指示标志检测结果。实验证明:该方法可有效采集道路交通环境的车载点云数据;可有效分类交通指示标志与其余物体车载点云数据,并完整提取交通指示标志边缘信息,完成道路交通指示标志检测;在不同光照条件下,该方法的道路交通指示标志检测的一个用来评价二分类模型优劣的常用指标AUC值均接近1,检测精度较高。 相似文献
11.
12.
13.
针对城市车载Li DAR数据处理中行道树的提取,首先对点云数据进行分层格网化处理;然后分析行道树在多层格网中的分布形态;最后结合点云的投影密度和高程分布等特征,以空间区域增长的方式提取行道树。实验证明,这种方法能有效地排除其他地物,提取完整的行道树点云。 相似文献
14.
当前车载激光扫描系统的数据量往 往 达 到 数 十 gb 乃 至 tb 级,海 量 激 光 点 云 数 据 的 加 载 与 查 询 对传统可视化方法提出了挑战。本文设计了一种基于内外存调度的三维可视化方法,突破了物理内存对显示数据量的限制。该方法首先利用双层四叉树索引数据结构实现外存储器上的点云数据管理与快速调度,基于该索引动态加载外存储器上的点云数据到内存,从而快速获取海量数据中的实时数据块;然后,利用多线程分时加载双层四叉树索引数据结构,实现激光点云数据外存到内存的实时传输与绘制。实验结果表明,本文方 法不受点云数据量与物理内存大小限制,海量点云可视化效果流畅,适用于台式计算机或网络环境下的海量激光点云数据的调度管理与实时可视化。 相似文献
15.
为了支持车载移动激光扫描点云数据的高效管理与快速可视化,提出了一种适用于车载海量点云的数据组织方法。该方法将原始点云数据分段后生成轨迹信息用于快速索引,分别对每段数据建立基于八叉树结构的LOD(levels of detail)索引,并采用多线程动态调度技术实现基于视点的海量点云渲染与漫游,显著提高了车载点云数据的调度效率。实验结果证明该点云数据组织方法是一种适合车载点云数据的高效管理方法。 相似文献
16.
基于深度学习方法,借鉴二维图像卷积的思想,设计了一种适合三维点云的卷积操作。点云卷积的作用域是局部球形邻域,输入为三维坐标和空间几何关系。通过点云卷积提取局部特征,使用最远点采样算法采集邻域中心点,根据半径构建球形局部邻域,使用多层感知器(multi-layer perceptron,MLP)网络学习空间关系权重,将学习到的关系权重和输入特征相乘,实现卷积操作。基于三维点云卷积,构建了一个多层分类网络模型实现点云分类。使用道路场景的黄石路数据集进行分类实验,结果证明了所提方法的有效性。 相似文献
17.
针对车载激光雷达(light detection and ranging,LiDAR)点云数据的不完整性问题,提出一种车载LiDAR点云数据分割以及基于分割后点云数据的半自动化建模方法。首先对点云数据进行标准格式转换及稀化;然后以不同地物的属性和几何特征为分割条件,分别建立道路、建筑物、树和路灯等附属设施的三维模型,并利用车载以及航空图像的纹理信息辅助建筑物的立面和顶面三维建模;最后以真实街景为实验区,基于拓普康IP-S2车载LiDAR点云数据,完成该街景的分割与建模。实验结果表明,该文提出的点云数据分割与街景地物重建方法比较简单,可实现道路和建筑物的半自动化分割;利用成熟的建模软件和方法,实现了建模的完整性和较强的可靠性。 相似文献
18.
针对车载激光点云数据空洞插值误差大及利用多尺度数学形态学滤波方法耗时高的问题,提出一种改进的数学形态学滤波方法,该方法按照点云空间分布形态格网化,以控制开运算方向。腐蚀运算过程中,根据格网腐蚀前后高程的变化情况,更新格网高程,以达到空洞精确填充及各格网均含地面点的目的。利用5组点云数据进行了实验,结果表明:该方法能有效提取地面点,运算效率明显优于多尺度数学形态学滤波方法,具有一定的实用性。 相似文献
19.
提出一种车载移动测量系统(MMS)激光点云与序列全景影像自动配准方法。首先采用层次化城市场景目标提取方法自激光点云提取天际线矢量,在全景影像中经虚拟成像与分割角点提取算法生成天际线矢量。然后,将提取结果作为几何配准基元,构建配准基元图,通过最小化配准基元图编辑距离进行匹配,组成共轭配准基元对,解算2D-3D粗配准模型,获得全景影像与LiDAR点云参考坐标系之间的初始转换关系。最后,为消除几何配准基元提取与匹配误差对配准结果的影响,自序列全景影像虚拟成像影像生成多视立体密集匹配点云,继而使用变种ICP算法优化其与激光点云数据间3D-3D配准参数,间接优化全景影像与激光点云间的配准参数,精化配准结果。试验结果表明,本文提出的自动配准方法可以实现车载MMS激光点云与序列全景影像的1.5像素级自动配准,配准成果可应用于真彩色点云生成等点云/影像数据融合应用。 相似文献