首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Quaternary Geochronology》2008,3(1-2):114-136
We present chronological constraints on a suite of permanently frozen fluvial deposits which contain ancient DNA (aDNA) from the Taimyr Peninsula of north-central Siberia. The luminescence phenomenology of these samples is first discussed, focusing on the optically stimulated luminescence (OSL) decay curve characteristics, thermoluminescence (TL) properties, and signal compositions of quartz from these previously unstudied deposits. Secondly, we assess the suitability of these samples for OSL dating and present the OSL chronologies obtained using both single-grain and multi-grain equivalent dose (De) measurements. The results of our analyses reveal a large amount of inter-aliquot variability in OSL decay curve shape that is directly related to differences in the size of the 280 °C TL peak and the associated slowly bleached ‘S2’ OSL component. Longer OSL stimulation durations are adopted in the De measurement procedure to prevent the progressive build-up of slowly bleached signal components throughout successive single-aliquot regenerative-dose (SAR) measurement cycles. The use of low preheat temperatures in the SAR procedure also reduces the deleterious effects of these slowly bleached signal components. The resultant single-grain and multi-grain OSL chronologies obtained using this approach are stratigraphically consistent and are in close agreement with independently established 14C ages at our sites. The findings of this research reveal the potential of OSL dating as a means of providing a reliable chronometric framework for sedimentary aDNA records in permafrost environments.  相似文献   

2.
In this study, fine-grain quartz was used for luminescence dating for lava baked samples from different sites in Datong. Optical stimulated luminescence (OSL), thermal transferred OSL (TT-OSL)/recuperated OSL (Re-OSL) and thermoluminescence (TL) dating protocols were applied. For these samples, the OSL signals saturate at about 300–400 Gy, which limits their age to less than 100 ka based on their ambient dose rates. The TT-OSL/Re-OSL method has poor dose recovery. TL dating gives reliable results, and multiple-aliquot regenerative-dose TL method with sensitivity change correction based on the 325 °C TL peak of a test dose can be applied for samples up to 400 ka. The results indicate that the ages of the volcanoes in Datong are from 380 ka to 84 ka. The volcanic activity started earlier in the southeast area than those in the northwest part, which is consist with the literature data.  相似文献   

3.
Quartz optically stimulated luminescence (OSL) is increasingly being used to constrain the depositional age of fluvial and glaciofluvial sequences over orbital (Milankovitch) timescales within the British Isles. Few of these previous studies have had any age control; however there is some evidence that OSL ages based on the single aliquot regenerative dose (SAR) protocol may be subject to systematic age underestimation as samples approach saturation. In this study, the age of 12 luminescence samples from a chronologically well-constrained site dating to 450 ka from the Thames terrace sequence, southern Britain, was measured using SAR in order to test the performance of the method close to its upper age limit. The characteristics, dose response and thermal stability of the OSL signal in these samples were assessed by investigating equivalent dose (De) as a function of stimulation time and component-resolved pulse annealing. Despite the fact that the samples are dominated by the quartz fast component, these results showed that both the medium and slow components have lower stabilities than the fast component, but with the unstable medium component most affecting the initial part of the OSL signal used in dating. Based on isolating the fast component either through curve fitting or eliminating the medium component using the early background subtraction method, OSL ages up to 450 Gy were found to compare well with the expected age of the site of 450 ± 23 ka. In contrast, a systematic age underestimation of 10% was manifested at lower doses when using the initial part of the OSL signal, contaminated by the medium component. These results suggest that the early background subtraction method should be used when dating in the non-linear part of the growth curve as it provides a better separation of thermally unstable signals and represents a more convenient approach than curve fitting in well-behaved samples.  相似文献   

4.
OSL and IRSL dating are applied to samples from a 152 m-long drill core to constrain the timing of three glaciolacustrine depositional periods within the infill of an overdeepened bedrock trough in the Lower Glatt valley, N Switzerland. The characterisation of the dose-response suggests that the polymineral IRSL50 and pIRIR180/225 signals are close to saturation, while quartz OSL ages are within the range of reliable dating. The demarcation of the upper quartz OSL dating limit, however, remains challenging. Dose-recovery tests performed with long storage periods were used to investigate the reliability of the high region of the dose-response curve. They suggest an upper limit for reliable dating of ∼400 Gy for these samples, which was considerably lower than the commonly used 2D0 criterion. Lifetimes were calculated for the quartz OSL and the thermal stability of the signal is not considered as problematic for the determined ages. Allowing for a contribution from inherited dose due to partial bleaching, places the infill of the overdeepened valley within the penultimate glacial cycle (MIS6).  相似文献   

5.
Whilst optically stimulated luminescence (OSL) is commonly more suitable for sediment dating because of faster signal resetting, thermoluminescence (TL) remains important for dating burnt material, e.g. in archaeological contexts, or for studying the luminescence properties of different materials. A lack of user-optimized analysis software for TL data has exacerbated the decline of TL dating in comparison to OSL. However, exciting developments in TL dating of flint and calcite indicate a rise in application of this underused method.R is a programming language and environment for statistical computing and graphics. It provides a wide variety of statistical and graphical techniques and is highly extendable. A package specifically designed for luminescence data analysis is available. However, it mainly includes functions for the analysis of OSL data. The TLdating package is a new R package specifically dedicated to TL dating. This package is designed to be fully compatible with the existing Luminescence package and is user-friendly. It includes functions for TL data pretreatment and palaeodose estimation using the MAAD and the SAR protocols. The functionality of the TLdating package is evaluated using heated flints from Taibeh, Jordan.  相似文献   

6.
This study focuses on characterizing the thermoluminescence (TL) and optically stimulated luminescence (OSL) of quartz in burnt clay, pottery, and the sediments unearthed from a Neolithic site, the Beicun site of the Liangzhu culture. It shows that the initial OSL signals (within 0.8 s) of most burnt clay and pottery sherds are not dominated by the fast component. Results of a heating simulation experiment of sediment quartz show that annealing at temperatures exceeding 600–800 °C decreased the proportion of the fast component in the initial signal slightly. In addition, the proportion of the medium component in the later signal (0.8–5 s) increased significantly, resulting in a decrease in the Fast Ratio value. Therefore, high annealing temperature may be an important reason for the slow decay rate of OSL signals of the burnt clay and pottery samples. The De(t) plot shows that most of the samples have thermally stable OSL component signals, which have no significant effect on the final OSL ages. The single-aliquot regenerative-dose (SAR) protocol was used to determine the OSL and TL ages for chunk burnt clay and pottery sherds. The high-precision age of the last archaeological heating event, such as sacrifice, burning, or domestic firing, can be obtained by determining the TL and OSL ages of a homogeneous chunk of burnt clay. The OSL results are consistent with the 14C age of carbon chips extracted from burnt clay. The age of the Beicun site is finally determined to be approximately 5000–5300 BP (BP represents before 2020), belonging to the early period of the Liangzhu culture.  相似文献   

7.
Quartz optically stimulated luminescence (OSL) dating is widely used to determine the time of deposition and burial of Late Quaternary sediments. Application of the method is usually limited to the past 150,000 years due to early saturation of the OSL signal. Here we explore the potential to date Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz. We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10 °C, and that this trap is bleachable by sunlight. The VSL signal grows with dose to ∼6400 Gy, a factor ∼20 higher than the conventional quartz OSL signal, and with the proposed protocol we recover a known dose of 1000 Gy in three out of four samples. The potential of the VSL protocol for dating Quaternary sediments is highlighted by its successful application to a suite of geological samples ranging in age between 13 and 330 ka. Based on our investigations, we propose that the VSL protocol has the potential to extend the quartz dating range to cover the full Quaternary.  相似文献   

8.
Radiofluorescence (RF) is the luminescence emitted during exposure to ionizing radiation. Charged particles or high-energy photons can be used as stimulation sources, and different designs for measurement equipment have been published. Only few studies have successfully used the quartz RF signal for dosimetry and dating. However, RF is a valuable tool in deciphering charge trafficking in quartz crystals, and also provides information for identifying types of defects causing specific luminescence emissions. Based on models for charge transfer in quartz, RF is seen as resulting from direct recombination of electrons with holes captured in recombination centers (or vice versa) during ionizing irradiation. Competition between reservoir and luminescent centers explains the initial decay of the modeled RF curve followed by a steady rise and also the observed ‘pre-dose’ effect. Emission spectra have been found to be similar to thermoluminescence (TL) spectra, with prevalent emissions in the UV and further emissions for some samples in the blue-green and red range. The high intensity levels and the possibility of choosing longer accumulation times compared to TL and OSL are advantages of RF for spectral measurements. Relative peak intensities in the emission spectra change with dose and absolute intensities with dose rate. Investigating the RF signal with changing measurement temperature allows calculating physical parameters of individual emissions that control thermal quenching. The degree of thermal quenching varies between the emissions, with most intense quenching in the UV. Sensitization of RF by several orders of magnitude has been observed after annealing at 500 °C.  相似文献   

9.
In order to successfully understand the complex evolution of prehistoric societies, archaeologists require absolute dating tools, which are not only accurate but also widely applicable. Thermoluminescence (TL) dating is one such approach that has been successfully used to establish a general chronological framework for prehistoric sites and is particularly suited for use on heated lithic artefacts. Experiments conducted in this study have clearly shown the applicability of Electron Spin Resonance (ESR) isothermal modelling in combination with TL dating to constrain firing temperature. This expands the potential application for TL dating to include artefacts treated at low firing temperatures. The present study shows potential in terms of precision and accuracy for framing the “equivalent firing temperature”. At the same time, the comparison of the TL signal with the lattice-defects and aluminium centres invigorate the use of ESR dating on heated flint, especially with samples that have received low thermal treatment. The presence of organic matter in large quantity raises concern on the pyrolysis effect on the luminescence signal; however, the use of ESR isothermal and isochronal modelling could potentially lead to the ability to overcome current interferences of the organic radicals within the dating signal of TL.  相似文献   

10.
The usual practice in optical dating is to derive an equivalent dose (De) (and hence age) from integration of the initial part of the measured optically stimulated luminescence (OSL) signal. This ‘bulk’ OSL signal is known to comprise several semi-independent components, each of which decays at different rates during measurement, and thus contributes a different proportion to the bulk signal as measurement time progresses. Data are presented here which show a strong dependence of De on the bulk signal integration interval, with reduced De for later signal integration intervals resulting from lower medium component De values. This dependence leads to two problems: (i) deciding which signal integral to choose, and (ii) the possibility that all bulk signals will provide systematic age underestimation due to medium component signal contributions. Isolating the fast component of the bulk OSL signal provides a solution to both problems and several methods of achieving this are assessed; an efficient new method is described which is incorporated in to standard single-aliquot regenerative-dose measurement sequences. This method involves the direct measurement of the fast-component signal using infrared (830 nm) stimulation of quartz at 160 °C, prior to the standard bulk OSL measurement with 470 nm stimulation. It is shown that the measured quartz infrared stimulated luminescence signals resolve pure fast-component signals and provide De estimates consistent with those from signal deconvolution. This approach can only be applied to samples with relatively bright luminescence emissions, but in these cases is expected to provide a more robust estimate of palaeodose.  相似文献   

11.
Sediments deposited by the AD 869 Jogan tsunami offer an opportunity to test the reliability of optically stimulated luminescence (OSL) dating of relatively old historical tsunami deposits. We collected a geoslicer sample from sand deposited on the Sendai Plain, northeastern Japan, by the Jogan tsunami and applied quartz OSL dating to it. We then compared the OSL ages with the known age of the tsunami event. In ascending order, the sedimentary sequence in the geoslicer sample consists of the beach–dune sand, lower peat, Jogan tsunami deposit, upper peat, pre-2011 paddy soil, and the 2011 tsunami deposit. To obtain equivalent dose (De,bulk), a standard single-aliquot renegerative-dose (SAR) protocol was applied to large aliquots of the 180–250 μm fraction of two samples from the beach–dune sand, and four samples from differing levels of the Jogan tsunami deposit. The OSL decay curves were dominated by the medium component; thus, for two samples from the Jogan deposit the fast-component OSL signal was isolated and used to determine the equivalent dose (De,fast). Using De,bulk, OSL ages of the tsunami deposit were underestimated by ∼40%, and even the beach–dune sand was dated younger than AD 869. In contrast, De,fast provided a robust age estimate with only slight underestimation. A pulse annealing test showed that the bulk and medium-component OSL signals were thermally unstable. The medium component in the natural OSL was clearly truncated in comparison to the regenerated OSL; the medium component is thus considered to be the main cause of the underestimated ages. Similar effects of a dominant medium-component OSL have been reported in tectonically active regions, which are also prone to tsunamis. The effect of this dominance should be carefully considered in quartz OSL dating of tsunami deposits.  相似文献   

12.
Thermoluminescence (TL) is routinely used to date heated lithic artefacts which mostly consist of silex (a mixture of amorphous opal and microcrystalline chalcedony). Analytical investigations of bulk samples confirmed that these materials contain considerable concentrations of radioactive elements, generating an internal dose rate contribution. Common dosimetric models assume the latter to be homogeneous throughout the sample. If this assumption would prove invalid, this will result in systematic errors in the calculated age, especially in the course of so called ‘hot spots’ of α-emitters (and associated local changes in α-sensitivity) and the dose response characteristics of α-radiation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of 22 silex samples are presented here, quantifying element concentrations at several tens analytical spots per sample. Along with radioactive elements (K, Rb, U, Th), another 21 major, minor and trace elements were measured in order to allow characterization of the impurities present in most of the samples. The dataset provides a detailed picture of the spatial distribution of radionuclides and hence of the uniformity of the internal α- and β-dose rate. It is shown that the silex itself mostly contains low amounts of K (<0.1 wt.%), U (<1.0 μg g−1) and Th (<0.4 μg g−1), and dosimetrically negligible Rb concentrations. Systematically higher concentrations are obtained by ICP-MS measurements of the bulk samples. This matches with the finding that impurities (veins, inclusions) often yield significantly elevated radionuclide concentrations, up to two orders of magnitude higher than the silex values. These veins and inclusions, for example Ca or Mg carbonates and Fe–Mn-oxy-hydroxides, lead to steep gradients mainly in the internal α-radiation field. Alternative approaches are required to account for the non-uniform internal dose rate and improve the reliability of TL dates of problematic samples.  相似文献   

13.
The prehistoric site of Ifri n'Ammar is situated in northeastern Morocco, in the northern prolongation of the Middle Atlas Mountains. It is a key location in unravelling the history of anatomically modern humans (AMH) in northern Africa as it reveals Middle and Late Palaeolithic occupation phases since ∼170 ka. Whilst the archaeological sequence within the rock shelter has been well studied, the timing of landscape dynamics around Ifri n'Ammar is still poorly understood. This study therefore aims to establish a detailed chronology of the Wadi Selloum profile at the apron of the shelter, based on optically stimulated luminescence (OSL) dating of ephemeral stream deposits. Coarse-grain quartz was used for single-grain and multiple-grain dating procedures to investigate the luminescence properties of these deposits and to get more accurate age information concerning the phases of human occupation. Continuous wave OSL (CW-OSL) revealed a dominant fast component for all quartz samples. The dose distribution of the uppermost samples showed overdispersion values >25% and significant positive skewness. We identified partial bleaching as the main source of scatter in the equivalent dose (De) distribution. The lowermost sample appeared to be close to signal saturation. The shapes of the dose response curve varied widely between aliquots and coarse quartz grains exhibited therefore very different dose saturation behaviours among aliquots. With fully saturated dose response curves (DRCs), meaningful D0 values were assumed for De estimation.The eight OSL samples yielded stratigraphically consistent ages ranging from 1.3 ± 0.2 ka to 76 ± 5 ka, thus reaching the Middle Palaeolithic period. Moreover, a pottery shard dated to 7.4 ± 0.6 ka (Early Neolithic period) by thermoluminescence (TL), perfectly matched the Holocene OSL samples extracted at the same depth of the profile. In summary, our results point to fluvial aggradation during OIS 5.1, the late glacial period, and the Holocene.  相似文献   

14.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

15.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

16.
Luminescence dating is one of the leading techniques to establish chronologies for loess-palaeosol sequences and has been successfully applied to different minerals and grain size fractions. Using optical stimulated luminescence (OSL) from quartz, we present for the first time a high resolution chronology for the loess section Ostrau in Saxony/Germany. We compare OSL ages derived from two different grain size fractions, coarse (90–200 μm) and the fine grain (4–11 μm) separates. Our results show that the loess section is divided into two parts, separated by a hiatus. OSL samples from the upper part of the loess section show equivalent doses of De < 100 Gy. De values >180 Gy are observed for the lower part of the loess section. The coarse and fine grain ages agree and also fit to the litho- and pedostratigraphy for the upper part of the profile. For the lower part of the profile the coarse grained quartz OSL is in saturation. The fine grained quartz OSL is not saturated but it appears that the fine grain OSL ages underestimate the sedimentation age. Approaches to explain the De differences between the grain size fractions are presented (e.g. post-depositional translocation, dosimetry). A modified SAR protocol for the fine grain fraction produced ages that are in good agreement with expected ages based on litho- and pedostratigraphy. Although further investigations are needed, our results show the suitability of the Saxonian loess belt for OSL dating.  相似文献   

17.
The luminescence characteristics of volcanic plagioclase from an andesitic tephra (Hakone-Tokyo pumice, Hk-TP) from Japan were studied in order to assess if optical dating of plagioclase could be applied to Quaternary tephra. The tephra was shown to contain two kinds of plagioclase grains, labradorite which had a smooth surface and bytownite with a rough surface. The aliquots consisting of smaller grains contained more bytownite; these showed higher luminescence sensitivity and a higher fading rate compared to the larger-grained aliquots containing only labradorite. The fading rates of both OSL and IRSL signals were similar for each grain size. However, the OSL signal showed severe thermal transfer which made it difficult to use for dating. Using the IRSL signal from grains ranging from 150 to 212 μm, an age was obtained in agreement with the independent evidence, once a small fading correction had been applied.  相似文献   

18.
The properties of the quartz luminescence signal have been shown to be a useful tool for sediment provenance analysis. These provenance studies are based on the sensitivity of the fast optically stimulated luminescence (OSL) component, which is also used for sediment dating. Besides the widespread occurrence of quartz in terrigenous sediments, OSL sensitivity can be acquired using relatively fast and low-cost measurements compared to sediment provenance analysis methods based on accessory minerals or isotopes. Additionally, laboratories worldwide already have an extensive database of recorded quartz OSL signals primarily measured for dating studies, and these data could potentially be repurposed for provenance analysis of Quaternary sedimentary systems through OSL sensitivity calculation. Here, we investigate the use of OSL quartz signals measured in sediment dating surveys for OSL sensitivity calculation and evaluation of changes in sediment sources. The OSL sensitivity was calculated and expressed as %BOSLF, which corresponds to the percentage of the fast OSL component signal (blue stimulation) to the total OSL curve; such approach is advantageous as it does not require any normalisation of the measured signal intensity to dose or aliquot size (weight). Three sets of samples from Amazonian fluvial sediments are investigated: two sets of Holocene floodplain sediments representing different sediment sources to the Amazonian fluvial system, i.e. the Amazon craton and the Andes Mountain belt, and a set of samples from the Içá Formation, a paleo-fluvial system active during the Pleistocene whose provenance is not fully known. Results show that the quartz OSL signal derived from the first test doses (Tn) applied in dating protocols had the best performance for %BOSLF calculation when compared to results from a measurement protocol designed specifically for sediment provenance analysis. There is significant correlation (R2 = 88) between sensitivities derived from Tn and a specific OSL provenance analysis protocol. The proposed approach indicates to be appropriate for sediment provenance analysis since it is able to discriminate signal differences among samples from known sources: Brazilian cratonic quartz yield high sensitivity values (mean %BOSLF >70), in contrast to the relatively lower values from Andean quartz (mean %BOSLF <50). In general, quartz OSL sensitivities from the Içá Formation samples fall into the same range of modern sediments transported by the Içá and Japurá rivers draining the Andean Eastern Cordillera of Colombia and Ecuador. We also observe a decrease in quartz OSL sensitivity during the Holocene, notably after 4 ka, with younger deposits showing lower sensitivity. Sediment provenance variations are discussed in terms of watershed rearrangement and/or precipitation-driven changes during the Late Pleistocene and Holocene across Amazonia.  相似文献   

19.
The Mississippi and Missouri river valleys in the midcontinental United States contain extensive loess-paleosol sequences that are used to constrain the timing of expansion and retreat of the Laurentide Ice Sheet. Previous studies have been unsuccessful in producing finite ages for sediments older than ∼150 ka due to saturation of luminescence emissions. The thermally transferred optically stimulated luminescence (TT-OSL) dating technique is tested on the fine-grained (4–11 μm) quartz fraction of these loess deposits because the TT-OSL signal has been shown to grow with high (kGy) radiation doses. The TT-OSL signal continued to increase with radiation dose above 900 Gy. The optical and thermal stabilities of this TT-OSL signal are evaluated. Equivalent dose values are highly sensitive to preheat temperatures. Recycling ratios, zero-dose response values, and dose recovery tests all yield acceptable values for samples with burial doses >∼200 Gy. The apparent TT-OSL ages for the Roxana Silt (∼52–63 ka), Teneriffe Silt (∼66 ka), and Loveland Silt (∼133–192 ka) agree at 1σ level with previously published TL and IRSL ages derived from the same samples. For the oldest unit, the Crowley's Ridge Silt, TT-OSL ages (∼167–200 ka) are younger than IRSL or TL ages by ∼20%. This is interpreted as underestimation related to TT-OSL signal contamination, which can be avoided by isolating the fast component of the TT-OSL. Preliminary fast component TT-OSL ages for the Crowley's Ridge Silt (∼197–241 ka) favor deposition during marine oxygen-isotope stage (MIS) 7 or 8, contrary to a previous inference of a MIS 12 deposition.  相似文献   

20.
Coastal plain of Hangzhou Bay, to the south of the present Yangtze Estuary, is closely linked to the evolution of the Yangtze River delta. However, absolute age of Pre-Holocene sediments is limited, which hinders the understanding of this area's environmental evolution. In this study, using optically stimulated luminescence (OSL), single aliquots and single grains of quartz and K-feldspar were used to date the late Quaternary sediments in coastal plain on the southern Hangzhou Bay. The vertical difference in particle size composition render either silt- or sand-sized quartz for dating. Cross-checking of multiple OSL dating methods indicated that the upper ∼65 m recorded the Holocene part of the succession; sediment from a depth of 136.6 m was dated to ∼180 ka. It was found that the single-grain method was more reliable in comparison to single-aliquot age, the former minimized the effect of signal components. Single-grain quartz and K-feldspar luminescence yielded consistent ages at sample depth of 136.6 m (∼160–180 ka), while the latter gave robust age at depth of 115.5 m (∼150 ka). This chronology is in general in accordance with neighbouring cores and can constrain paleomagnetic dating results in those cores. Taking together, the study site has thickest Holocene deposits in comparison to the highland centered around Taihu Lake on the southern Yangtze delta. Moreover, the luminescence characteristics of quartz from different sample depths, behaved differently with respect to luminescence sensitivity, signal components and saturation level, perhaps reflecting varied provenance and weathering characteristics caused by climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号