首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
River channel pattern may be regarded as the outcome of streamflow, sediment load, and channel boundary conditions, as can the grain size distribution of bed material. It may therefore be expected that connections should exist between river channel pattern characteristics and the corresponding river bed material grain size parameters. Using data from some Chinese rivers, an attempt has been made to express these connections quantitatively by using statistical methods. The work demonstrates that the river's bed load can be related to the percentage of the traction subpopulation of the bed material shown by the probabilistic plot of grain size cumulative-frequency curve. The study has also revealed some correlations between the bed material grain size parameters of rivers and their channel geometry such as channel width-depth ratio and channel sinuosity. For instance, the higher the ratio of the traction to suspension subpopulation in bed material, the more sinuous, more shallow, and wider the river channel would be. Furthermore, a discrimination function has been given to distinguish between meandering and wandering braided rivers. If the existence of these relationships can be supported by data from more rivers in other regions, then by using them we can postdict palaeoriver channel geometry and its channel pattern character from fluvial sediment grain size parameters of the palaeoriver. This would open a new way to reconstruct the physicogeographical environment in which palaeorivers developed.  相似文献   

3.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Comprehensive empirical data of the response of unstable streams over a range of environmental conditions are unavailable. In this study, as a substitute for empirical data, a physically based numerical model of channel evolution is used in a range of numerical simulation experiments designed to predict the sensitivity of channel response to changes in control variables. The scope of the study is limited by the scope of the numerical model which applies to straight, sand-bed streams with cohesive bank materials that have been destabilized by sediment starvation and evolve towards equilibrium through bed degradation followed by channel widening. Results are presented for stable and unstable channel conditions. Stable channel depths are most sensitive to channel discharge, though the critical threshold shear stress for the entrainment of cohesive bank materials and discharge are both significant in determining the width. The sediment load, channel gradient, bank material cohesion, size of failed bank material aggregates and the initial bank height have sensitivities an order of magnitude smaller than discharge for both width and depth. Variations in bed material characteristics within the sand-size range are found to have little impact on simulated stable channel morphology. For unstable channels, the relative dominance of parameter sensitivities is examined in the context of an empirical-conceptual model of channel evolution proposed by Thorne and Osman (1988), to highlight the relationships between parameter dominance, time, and the processes and forms characterizing individual stages of channel evolution. Rates of change with time of width and depth sensitivity parameters for five tested independent variables (discharge, sediment supply, channel gradient, bank material cohesion and bed material size) are found to vary as a function of time, such that different stages of channel evolution are characterized by variations in the relative dominance of tested variables. The results support the hypothesis proposed by Thorne and Osman (1988) that the critical bank height required to initiate mass-wasting and widening may be regarded as a geomorphic threshold.  相似文献   

6.
The Hangzhou Bay is a macro-tidal bay located to the south of the Changjiang estuary in China. Along its northern shore, a large-scale tidal channel system has developed, which includes a main northern tidal channel, with a length of more than 50 km and a width up to 10 km, and a secondary southern tidal channel. A process-based morphodynamic model, incorporating the cohesive sediment transport module of Delft3D, is used to analyze the physical processes and mechanisms underlying the formation and evolution of this tidal channel system. The results show that spatial gradients of flood dominance, caused by boundary enhancement via current convergences, is responsible for the formation of the channel system, due to a combination of the various factors such as funnel-shaped geometry hindering associated with the presence of islands, and flow deviation by the southern tidal flat and so on. The model results agree well with the real morphological features. This study also indicates that the reclamation of the southern tidal flat imposes a profound influence on the morphological evolution of the tidal channel system in the Hangzhou Bay. It is feasible to use the model to simulate long-term estuarine morphological changes with cohesive sediment settings.  相似文献   

7.
Changes in channel character along a small river in the Scottish Highlands are described using measurements in seven reaches over a 3 km length with no significant tributaries but a decline in slope from 0.02 to 0.00015 because of local baselevel control. This decline in slope is associated with rapid downstream fining of the gravel bed followed by an abrupt transition to a sand bed. The channel pattern alters progressively rather than abruptly, in the sequence (1) near-braided, (2) meandering with active point-bar chutes, (3) meandering with active outer-bank talweg, (4) stable equiwidth sinuous. The changes in channel pattern and hydraulic geometry are predicted better by rational approaches based on critical shear stress or other physical concepts than by purely empirical discriminant or trend equations. Measurements in five reaches confirm a downstream decrease in shear stress and the amount and calibre of bedload. It is argued that the downstream changes in channel character in this stream are induced by profile concavity inherited from deglacial conditions, are typical of many streams in mountainous areas and can be understood in terms of slope-induced changes in hydraulic properties.  相似文献   

8.
Glacier retreat leads to changes in channel pattern during deglaciation, in response to changing water, sediment and base level controls. Recent ongoing retreat at Skaftafellsjökull, Iceland (c. 50 m per year since 1998) has resulted in the formation of a sequence of river terraces, and several changes in river channel pattern. This paper compares widely used models of river channel pattern against the changes observed at Skaftafellsjökull. Doing this reveals the role of topographic forcing in determining proglacial channel pattern, whilst examining the predictive power and limitations of the various approaches to classifying river channels. Topography was found to play a large role in determining channel pattern in proglacial environments for two reasons: firstly, glacier retreat forces rivers to flow through confined moraine reaches. In these reaches, channels which theory predicts should be braided are forced to adopt a single channel. Secondly, proximal incision of proglacial rivers, accompanied by downstream aggradation, leads to changes in slope which force the river to cross channel pattern thresholds. The findings of this work indicate that in the short term, the majority of channel pattern change in proglacial rivers is due to topographic forcing, and that changes due to changing hydrology and sediment supply are initially relatively minor, although likely to increase in significance as deglaciation progresses. These findings have implications for palaeohydraulic studies, where changes in proglacial channel pattern are frequently interpreted as being due to changes in water or sediment supply. This paper shows that channel pattern can change at timescales faster than hydrological or sediment budget changes usually occur, in association with relatively minor changes in glacier mass balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
长江下游仪征河段处于枯季潮流界的上边界,揭示其汊道分流属性及滩槽联动演变机制,对河势控制工程及深水航道工程实践具有重要意义.本研究收集了1955—2021年水文泥沙及地形等资料,在汊道分流关系及调整成因上:世业洲右汊的分流属性为枯水倾向型汊道,即低流量时期分流比大于高流量时期;1959—2021年期间,世业洲右汊分流比经历了“稳定-下降-上升”的调整过程,上游河段滩槽格局调整及流域来沙减少引起的汊道间不均衡冲刷是分流关系调整的主因;流域流量过程调整、河道崩岸等综合影响引起1959—2017年期间世业洲右汊分流比为减小态势,航道工程实施起到了调控汊道关系的功能,世业洲右汊分流比为增加态势.在滩槽联动演变关系上:仪征河段进口段以展宽为主,世业洲左汊展宽程度大于右汊,左汊河床形态变化与进口段滩槽形态的一致性关系优于右汊,即上游进口段滩槽演变、流域来沙量减少等综合作用会加速了左汊发展;2015年南京以下12.5 m深水航道二期工程建设以来,工程区域淤积且洲体完整性增强,且深槽冲刷及河槽容积增大,表明航道工程已实现汊道分流关系及滩槽调控的功能.  相似文献   

11.
In this article we craft process‐specific algorithms that capture climate control of hillslope evolution in order to elucidate the legacy of past climate on present critical zone architecture and topography. Models of hillslope evolution traditionally comprise rock detachment into the mobile layer, mobile regolith transport, and a channel incision or aggradation boundary condition. We extend this system into the deep critical zone by considering a weathering damage zone below the mobile regolith in which rock strength is diminished; the degree of damage conditions the rate of mobile regolith production. We first discuss generic damage profiles in which appropriate length and damage scales govern profile shapes, and examine their dependence upon exhumation rate. We then introduce climate control through the example of rock damage by frost‐generated crack growth. We augment existing frost cracking models by incorporating damage rate limitations for long transport distances for water to the freezing front. Finally we link the frost cracking damage model, a mobile regolith production rule in which rock entrainment is conditioned by the damage state of the rock, and a frost creep transport model, to examine the evolution of an interfluve under oscillating climate. Aspect‐related differences in mean annual surface temperatures result in differences in bedrock damage rate and mobile regolith transport efficiency, which in turn lead to asymmetries in critical zone architecture and hillslope form (divide migration). In a quasi‐steady state hillslope, the lowering rate is uniform, and the damage profile is better developed on north‐facing slopes where the frost damage process is most intense. Because the residence times of mobile regolith and weathered bedrock in such landscapes are on the order of 10 to 100 ka, climate cycles over similar timescales result in modulation of transport and damage efficiencies. These lead to temporal variation in mobile regolith thickness, and to corresponding changes in sediment delivery to bounding streams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Rivers are natural systems whose planform pattern in alluvial reaches reflects a balance between three fundamental ingredients: flow energy, sediment calibre and supply, and vegetation. Whilst early research on river channel classification emphasised flow (stream power) and sediment controls, the impact of vegetation is now recognised in increasingly detailed classification schemes. Different planform patterns are more or less sensitive to changes in these three fundamental ingredients, which in the absence of human interventions all respond to changes in climate, allowing different morphological configurations to evolve and in some cases shift from one planform style to another. Multi-thread, braided and transitional river channel styles are common in European regions where conditions for the development of these planform styles, notably high bed material supply and steep channel gradients, exist. However, widespread, intense human impacts on European river systems, particularly over recent centuries, have caused major changes in river styles. Human activities impact on all three major controls on channel pattern: flow regime, sediment regime, vegetation (both riparian and catchment-wide). Whilst the mix of human activities may vary greatly between catchments, research from across Europe on the historical evolution of river systems has identified consistent trends in channel pattern change, particularly within rivers draining the Alps. These trends involve periods of narrowing and widening, and also switching between multi-thread and single-thread styles. Although flow regulation is often the key focus of explanations for human-induced channel change, our review suggests that human manipulation of sediment supply is a major, possibly the dominant, causal factor. We also suggest that “engineering” by riparian trees can accelerate transitions in pattern induced by flow and sediment change and can also shift transition thresholds, offering a new perspective for interpretation of channel change in addition to the focus on flow and sediment regime within existing models. Whilst the development of planform classifications of increasing complexity have been crucial in developing terminology and highlighting the main factors that control channel styles, additional approaches are needed to understand, predict and manage European Alpine river systems. A combination of field, laboratory and numerical modeling approaches are needed to advance the process understanding that is necessary to anticipate river landscape, particularly planform, changes and thus to make ecologically sound management choices.  相似文献   

13.
This paper describes meandering alluvial rivers with mean annual suspended-sediment concentrations of more than 100 kgm?3 on the Loess Plateau, China, and explains their formation as caused by the effect of hyperconcentrated water flow. When the river is dominated by hyperconcentrated flow, the rate of energy expenditure required for sediment transport declines significantly. Accordingly, the river channel adjusts itself to a lower channel gradient by increasing the river length, resulting in a meandering channel. Since the stable transportation of sediment by hyperconcentrated flow is dependent on river channel boundary conditions, the latter play an important role in the formation of meanders of this kind. The paper also discusses the conditions for the discrimination of meandering and braided rivers in this area.  相似文献   

14.
The management of riverine environments is shown to require a knowledge and awareness of the complex interactions between fluvial and mass-wasting processes, riparian vegetation, and channel form. Identification of the cause of instability rather than the local symptoms, and knowledge of the temporal and spatial aspects of channel adjustment are central to the application of (1) appropriate analyses to estimate future channel changes, (2) appropriate mitigation measures, and (3) the protection of river-crossing structures and adjacent land. Conceptual models of channel evolution and bank-slope development are particularly valuable for interpreting past and present processes, applying appropriate computational techniques to estimate future channel changes, and implementing strategies to mitigate the impacts of processes likely to dominate the channel in the future. Techniques for identification and analysis of channel instability are interdisciplinary and provide a mechanism for estimating changes in channel-bed elevation and channel width with time. Features of channel form and associated riparian vegetation can be used as diagnostic criteria to identify channel processes, the stage of channel evolution and the magnitude and extent of instability. Changes in bed elevation with time can be represented using an exponential function; changes in channel width with time can be calculated using slope stability equations and (or) projection of a temporary angle of stability from a low-angle surface termed the ‘slough line’ that supports re-establishment of woody vegetation. These techniques, in combination with knowledge of the state of channel evolution, can then be used to assess the appropriateness of various mitigation measures to control on-going channel adjustments and to protect river-crossing structures.  相似文献   

15.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
严珍珍  张怀  范湘涛  杜小平  石耀霖 《地震》2013,33(4):105-114
在活动构造区, 河流地貌对构造活动具有明显的响应, 地貌形态和水系形态能够很好地记录构造活动信息。 基于地貌演化理论, 考虑断层的左旋错动作用及降雨等因素, 利用数值模拟方法, 定量研究河流形态在断层水平错动及流水侵蚀内外力作用下的动力学演变过程。 初步的计算结果显示了河流形态与断层走滑运动的耦合效应。 断层发生水平左旋滑动促使该处河道两侧的陡坎发生相对错动, 形成弯转水系, 伴随河流的侧向侵蚀作用, 河道上下游连续被拓宽, 河道下游右侧堆积了较厚的沉积物, 而河道上游左侧由于受到较强流水侵蚀作用很难堆积沉积物。 分别对河道上游和河道下游的横剖面形态进行对比分析, 表明由于断层水平错动效应, 使得河道下游两侧呈现不对称特征, 而河道上游依然保持着明显对称性。 同时, 河道剖面形态对断层水平错动作用有积极的响应, 由于断层持续左旋走滑运动, 断层处剖面的高程突然增加, 坡度也随之突然变陡。 数值模拟结果与实际地质考察结果有着很好的一致性, 证明了理论和数值模型的可靠性。  相似文献   

17.
An hypothesis from which a general principle covering deformation of alluvial boundaries may be developed is proposed, namely—flow of fluid past a deformable boundary will deform the boundary so as to increase the resistance to flow. Upon attainment of a local maximum of resistance to flow the boundary shape will cease to change. Evidence from channel bed forms, meander geometry and armoured beds is presented to support the hypothesis. One implication of the hypothesis is that channels will adjust so that sediment movement is maximized. The authors would like geomorphologists to test this in their work on landscape evolution.  相似文献   

18.
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10 disturbed from 13 undisturbed reaches with 90 per cent and 92 per cent correct classification respectively. These variables are the total number of pools per reach, the ratio of mean residual pool depth to mean bankfull depth, and the ratio of critical shear stress of the median surface grain size to bankfull shear stress. The last variable can be dropped without a decrease in rate of correct classification; however, the resulting two-variable model may be less robust. Analysis of the distribution of channel units, including pool types, can also be used to discriminate disturbed from undisturbed reaches and is particularly useful for assessment of aquatic habitat condition. However, channel unit classification and inventory can be subject to considerable error and observer bias. Abundance of pool-related large woody debris is highly correlated with pool frequency and is an important factor determining channel morphology. Results of this study yield a much needed, objective, geomorphic discrimination of pristine and disturbed channel conditions, providing a reference standard for channel assessment and restoration efforts.  相似文献   

19.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

20.
River channel patterns are thought to form a morphological continuum. This continuum is two-dimensional, defined by plan features of which there are three (straight, meandering, branching), and structural levels of fluvial relief of which there are also three (floodplain, flood channel, low-water channel). Combinations of these three categories define the diversity of patterns. One of the most important factors in channel development is stream power, defined by water discharge and river slope. The greater the stream power, the stronger the branching tendency, but threshold values of stream power are different for the three different hierarchical levels of channel relief. The critical stream power values and hydrological regime together define the channel pattern, and analysis of the pattern type can be undertaken using effective discharge curves. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号