首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The most significant vertical movements of the oceanic crust in the Central Atlantic are characteristic of transverse ridges confined to transform fracture zones. These movements are also recorded in some local depressions of the Mid-Atlantic Ridge (MAR) and in older structures of deep-sea basins. The amplitude of such movements substantially exceeds that related to the cooling of lithospheric plates. Vertical movements can be driven by various factors: the thermal effect of a heated young MAR segment upon a cold plate, thermal stress, thermal energy released by friction in the course of displacement of fault walls relative to each other, serpentinization of the upper mantle rocks in the transform fault zone, and lateral compression and extension. The alternation of compression and extension that arises because of the nonparallel boundaries of the transform fracture zone and the unstable configuration of the rift/fracture zone junction was the main factor responsible for the formation of the transverse ridge in the Romanche Fracture Zone. The most probable cause of the vertical rise of the southern transverse ridge in the Vema Fracture Zone is the change in the spreading direction. In general, the fracture zones with active segments more than 100 km long are characterized by extension and compression oriented perpendicularly to the main displacement and related to slight changes in the spreading configuration. It is impossible to single out ambiguously the causes of vertical movements in particular structural features. In most cases, the vertical movements are controlled by several factors, while the main role belongs to the lateral compressive and tensile stresses that appear owing to changes in the movement of lithospheric blocks in the course of MAR spreading.  相似文献   

2.
The accretion of oceanic crust under conditions of oblique spreading is considered. It is shown that deviation of the normal to the strike of mid-ocean ridge from the extension direction results in the formation of echeloned basins and ranges in the rift valley, which are separated by normal and strike-slip faults oriented at an angle to the axis of the mid-ocean ridge. The orientation of spreading ranges is determined by initial breakup and divergence of plates, whereas the within-rift structural elements are local and shallow-seated; they are formed only in the tectonically mobile rift zone. As a rule, the mid-ocean ridges with oblique spreading are not displaced along transform fracture zones, and stresses are relaxed in accommodation zones without rupture of continuity of within-rift structural elements. The structural elements related to oblique spreading can be formed in both rift and megafault zones. At the initial breakup and divergence of continental or oceanic plates with increased crust thickness, the appearance of an extension component along with shear in megafault zones gives rise to the formation of embryonic accretionary structural elements. As opening and extension increase, oblique spreading zones are formed. Various destructive and accretionary structural elements (nearly parallel extension troughs; basin and range systems oriented obliquely relative to the strike of the fault zone and the extension axis; rhomb-shaped extension basins, etc.) can coexist in different segments of the fault zone and replace one another over time. The Andrew Bain Megafault Zone in the South Atlantic started to develop as a strike-slip fault zone that separated the African and Antarctic plates. Under extension in the oceanic domain, this zone was transformed into a system of strike-slip faults divided by accretionary structures. It is suggested that the De Geer Megafault Zone in the North Atlantic, which separated Greenland and Eurasia at the initial stage of extension that followed strike-slip offset, evolved in the same way.  相似文献   

3.
The walls of the Knipovich Ridge are complicated by normal and reverse faults revealed by a high-frequency profilograph. The map of their spatial distribution shows that the faults are grouped into domains a few tens of kilometers in size and are a result of superposition of several inequivalent geodynamic factors: the shear zone oriented parallel to the Hornsunn Fault and superposed on the typical dynamics of the midocean ridge with offsets along transform fracture zones and rifting along short segments of the Mid-Atlantic Ridge (MAR). According to the anomalous magnetic field, the Knipovich Ridge as a segment of the MAR has formed since the Oligocene including several segments with normal direction of spreading separated by a multitransform system of fracture zones. In the Quaternary, the boundary of plate interaction along the tension crack has been straightened to form the contemporary Knipovich Ridge, which crosses the previously existing magmatic spreading substrate and sedimentary cover at an angle of about 45° relative to the direction of accretion. The sedimentary cover along the walls of the Knipovich is Paleogene in age and has subsided into the rift valley to a depth of 500–1000 m along the normal faults.  相似文献   

4.
On the north coast of Iceland, the rift zone in North Iceland is shifted about 120 km to the west where it meets with, and joins, the mid-ocean Kolbeinsey ridge. This shift occurs along the Tjörnes fracture zone, an 80-km-wide zone of high seismicity, which is an oblique (non-perpendicular) transform fault. There are two main seismic lineaments within the Tjörnes fracture zone, one of which continues on land as a 25-km-long WNW-trending strike-slip fault. This fault, referred to as the Husavik fault, meets with, and joins, north-trending normal faults of the Theistareykir fissure swarm in the axial rift zone. The most clear-cut of these junctions occurs in a basaltic pahoehoe lava flow, of Holocene age, where the Husavik fault joins a large normal fault called Gudfinnugja. At this junction, the Husavik fault strikes N55°W, whereas Gudfinnugja strikes N5°E, so that they meet at an angle of 60°. The direction of the spreading vector in North Iceland is about N73°W, which is neither parallel with the strike of the Husavik fault nor perpendicular to the strike of the Gudfinnugja fault. During rifting episodes there is thus a slight opening on the Husavik fault as well as a considerable dextral strike-slip movement along the Gudfinnugja fault. Consequently, in the Holocene lava flow, there are tension fractures, collapse structures and pressure ridges along the Husavik fault, and pressure ridges and dextral pull-apart structures subparallel with the Gudfinnugja fault. The 60° angle between the Husavik strike-slip fault and the Gudfinnugja normal fault is the same as the angle between the Tjörnes fracture zone transform fault and the adjacent axial rift zones of North Iceland and the Kolbeinsey ridge. The junction between the faults of Husavik and Gudfinnugja may thus be viewed as a smaller-scale analogy to the junction between this transform fault and the nearby ridge segments. Using the results of photoelastic and finite-element studies, a model is provided for the tectonic development of these junctions. The model is based on an analogy between two offset cuts (mode I fractures) loaded in tension and segments of the axial rift zones (or parts thereof in the case of the Husavik fault). The results indicate that the Tjörnes fracture zone in general and the Husavik fault in particular, developed along zones of maximum shear stress. Furthermore, the model suggests that, as the ridge-segments propagate towards a zero-underlapping configuration, the angle between them and the associated major strike-slip faults gradually increases. This conclusion is supported by the trends of the main seismic lineaments of the Tjörnes fracture zone.  相似文献   

5.
The morphostructure of the segment between the Cardno and St. Helen transform fracture zones is studied in the rift zone of the South Atlantic slow-spreading mid-oceanic ridge (SAMOR). It was found that it is atypical of similar ridges because of the absence of an evolved rift valley. The rift zone in the transverse section is a cupola with flat slopes, whose surface is divided by volcanic massifs, plateau-like valleys, and unclear ridges and valleys. The entire morphostructure (a cupola-like regional pedestal and the listed relief forms of the second order) indicates its volcanic origin, and the rift zone in this segment is a volcanic high-land. This conclusion is supported by seismic and magnetic data. Because other (not all) SAMOR segments contain the rift valley, the results of this study indicate alternation of the tectonic and magmatic morphostructures along the entire rift zone and identification of its scales is the most important task of the morphostructural study of the SAMOR rift zone. Determination of geodynamic regimes on the basis of the results of morphostructural studies of the rift zone will arise from the solution of this task.  相似文献   

6.
New data are obtained on the structure, evolution, and origin of zones of nontransform offsets of adjacent segments in the Mid-Atlantic Ridge (MAR), which, in contrast to transform fracture zones, so far are studied insufficiently. The effects of deep mantle plumes developing off the crest of the MAR on the processes occurring in the spreading zone are revealed. These results are obtained from the geological investigation of the crest of the MAR between 19.8 ° and 21° S, where bottom sampling, bathymetric survey, and magnetic measurements have been carried out previously. Two segments of the rift valley displaced by 10 km relative to each other along a nontransform offset are revealed. A volcanic center of a spreading cell, which has been active over the last 2 Ma, is located in the northern part of the southern segment and distinguished by a decreased depth of the rift valley and increased thickness of the crust. Magnesian, slightly evolved basalts of the N-MORB type are detected in this center, whereas evolved and high-Fe basalts are found beyond it. The variation in the composition of the basalts indicates that the volcanic center is related to the upwelling of the asthenospheric mantle, which spread along and across the spreading ridge. In the lithosphere, the melt migrated off the volcanic center along the rift valley. In the northern segment, a vigorous volcanic center arose 2.5 Ma ago near its southern end; at present, the volcanic activity has ceased. As a result of the volcanic activity, an oval rise composed of enriched T-MORB-type basalts was formed at the western flank of the crest zone. The isotopic signatures show that the primary melts are derivatives of the chemically heterogeneous mantle. The mixing of material of the depleted mantle with the mantle material pertaining either to the Saint Helena or the Tristan da Cunha plumes is suggested; the mixture of all three sources cannot be ruled out. The conclusion is drawn that the mantle material of the Saint Helena plume was supplied to the melting zone beneath the axial rift near the oval rise along a linear permeable zone in the mantle extending at an azimuth of 225° SW. The blocks of mantle material that got to the convecting mantle from the Tristan da Cunha plume at the stage of supercontinent breakup were involved in melting as well. The nontransform offset between the two segments arose on the place of a previously existing transform fracture zone about 5 Ma ago. The nontransform offset developed in the regime of oblique spreading at the progressive propagation of the southern segment to the north. The zone of nontransform offset is characterized by recent volcanic activity. Over the last 2 Ma, spreading of the studied MAR segment was asymmetric, faster in the western direction. The rates of westward and eastward half-spreading in the northern segment are estimated at 1.88 and 1.60 cm/yr, respectively.  相似文献   

7.
The eastern Pontide magmatic arc extends ~600 km in an E-W direction along the Black Sea coast and was disrupted by a series of fault systems trending NE-SW, NW-SE, E-W, and N-S. These fault systems are responsible for the formation of diachronous extensional basins, rift or pull-apart, in the northern, southern, and axial zones of the eastern Pontides during the Mesozoic. Successive extensional or transtensional tectonic regimes caused the abortive Liassic rift basins and the Albian and Campanian pull-apart basins with deep-spreading troughs in the southern and axial zones. Liassic, Albian, and Campanian neptunian dikes, which indicate extensional tectonic regimes, crop out within the Paleozoic granites near Kale, Gumushane, and the Malm–Lower Cretaceous platform carbonates in Amasya and Gumushane. These neptunian dikes correspond to extensional cracks that are filled and overlain by the fossiliferous red pelagic limestones. Multidirectional Liassic neptunian dikes are consistent with the general trend of the paleofaults (NE-SW, NW-SE, and E-W), and active dextral North Anatolian fault (NAF) and sinistral Northeast Anatolian fault (NEAF) systems. The Albian neptunian dikes in Amasya formed in the synthetic oblique left-lateral normal faults of the main fault zone that runs parallel to the active North Anatolian fault zone (NAFZ).

Kinematic interpretation of the Liassic and Albian neptunian dikes suggests N-S extensional stress or northward movement of the Pontides along the conjugate fracture zones parallel to the NAFZ and NEAFZ. This northward movement of the Pontides in Liassic and Albian times requires left-lateral and right-lateral slips along the conjugate NAFZ and Northeast Anatolian fault zones (NEAFZ), respectively, in contrast to the recent active tectonics that have been accommodated by N-S compressional stress. On the other hand, mutual relationships between the neptunian dikes and the associated main fault zone of Campanian age extending in an E-W direction in the Kale area, Gumushane suggest the existence of a main left-lateral transtensional wrench zone. This system might be accommodated by the counterclockwise convergence of the Turkish plate with the Afro-Arabian plate relative to the Eurasian plate, and the southward oblique subduction of Paleotethys beneath the eastern Pontide magmatic arc during the Mesozoic.  相似文献   

8.
Typical pull-apart structures were created in scaled clay experiments with a pure strike-slip geometry (Riedel type experiments). A clay slab represents the sedimentary cover above a strike-slip fault in the rigid basement. At an early stage of the development of the deformation zone, synthetic shear fractures (Riedel shears) within the clay slab display dilatational behaviour. With increasing basal displacement the Riedel shears rotate and open further, developing into long, narrow and deep troughs. The shear displacement and the low angle with the prescribed principal basal fault set them apart from tension gashes. At a more evolved stage, synthetic segments (Y-shears) parallel to the basal principal fault develop and accommodate progressive strike-slip deformation. The Y-shears connect the tips of adjacent troughs developed from the earlier Riedel shears, resulting in the typical rhomb-shaped structures characteristic for pull-apart basins. The Strait of Sicily rift zone, with major strike-slip systems being active from the Miocene to the Present, comprises pull-apart basins at different length scales, for which the structural record suggests development by a mechanism similar to that observed in our experiments.  相似文献   

9.
One of the two objectives of the Vemanaute cruise of the French deep submersible Nautile, was the geological study of the eastern intersection area between the Mid-Atlantic Ridge (MAR) and the Vema Fracture Zone in the equatorial Atlantic. Fourteen dives were conducted that allowed detailed geological survey and sampling of the main morphostructural units of this area: the northern and southern walls of the fracture zone, the median ridge, the northern and southern troughs and the nodal basin. In situ observations of recent tectonic features such as furrows, ridges and circular depressions, concentrated within the southern trough, allowed us to establish the location and the size of the present-day displacement zone. Geological investigations have shown that the nodal basin is entirely floored by basalts thus contrasting with other equivalent areas such as the Kane and Oceanographer fracture zone-MAR eastern intersections. Finally, this study stresses the great opposition between the relatively old and tectonically inactive northern part of the fracture, and the southern part which shows active tectonics and recent volcanic activity.  相似文献   

10.
Calculation of the downward continuation for the anomalous magnetic field at the Knipovich Ridge showed more complicate segmentation of the spreading oceanic basement than was earlier considered. The structural pattern of the field is evidence that the area consists of no less than four segments separated by transform fracture zones with the azimuth of oceanic crust accretion about 310° and the normal position relative to the rift segments with the azimuth of 40°. The modern location of the axis of the Knipovich Ridge straightens the complicate divergent boundary between the plates in the strike-slip conditions between the spreading centers of the Mohns and Gakkel ridges. The axis is a detachment zone intersecting the oceanic basement having formed from the Late Oligocene. A new magnetoactive layer composed of magmatic products has not yet been formed in this structure.  相似文献   

11.
The St. Lawrence rift system from the Laurentian craton core to the offshore St. Lawrence River system is a seismically active zone in which fault reactivation is believed to occur along late Proterozoic to early Paleozoic normal faults related to the opening of the Iapetus ocean. The rift-related faults fringe the contact between the Grenvillian basement to the NW and Cambrian–Ordovician rocks of the St. Lawrence Lowlands to the SE and occur also within the Grenvillian basement. The St. Lawrence rift system trends NE–SW and represents a SE-dipping half-graben that links the NW–SE-trending Ottawa–Bonnechère and Saguenay River grabens, both interpreted as Iapetan failed arms. Coastal sections of the St. Lawrence River that expose fault rocks related to the St. Lawrence rift system have been studied between Québec city and the Saguenay River. Brittle faults marking the St. Lawrence rift system consist of NE- and NW-trending structures that show mutual crosscutting relationships. Fault rocks consist of fault breccias, cataclasites and pseudotachylytes. Field relationships suggest that the various types of fault rocks are associated with the same tectonic event. High-resolution marine seismic reflection data acquired in the St. Lawrence River estuary, between Rimouski, the Saguenay River and Forestville, identify submarine topographic relief attributed to the St. Lawrence rift system. Northeast-trending seismic reflection profiles show a basement geometry that agrees with onshore structural features. Northwest-trending seismic profiles suggest that normal faults fringing the St. Lawrence River are associated with a major topographic depression in the estuary, the Laurentian Channel trough, with up to 700 m of basement relief. A two-way travel-time to bedrock map, based on seismic data from the St. Lawrence estuary, and comparison with the onshore rift segment suggest that the Laurentian Channel trough varies from a half-graben to a graben structure from SW to NE. It is speculated that natural gas occurrences within both the onshore and offshore sequences of unconsolidated Quaternary deposits are possibly related to degassing processes of basement rocks, and that hydrocarbons were drained upward by the rift faults.  相似文献   

12.
The paper reports on the morphostructure and heat flow in zones of transform faults of the North Atlantic and the Southeast Pacific, focusing on the fundamental difference between heat flow in active and inactive parts of the faults. In the active parts, which are located between segments of the mid-ocean ridge (MOR), the measured heat flow is close to that observed in the rift zones of MORs. The heat flow is considered a joint effect of the thermal conductivity of the oceanic crust and convective heat and mass transfer by thermal waters inside the oceanic crust. In the inactive parts of the faults, with distance from the MOR, the heat flow decreases to the background rates typical of thalassocratons. The sedimentation rate in a fault zone and conductive heat flow refraction resulting from the heterogeneous thermal characteristics of the geological section are the factors that deflect heat flow.  相似文献   

13.
The Penola Trough is an intensely faulted northwest – southeast-trending half-graben structure. It is bound to the south by the major listric Hungerford/Kalangadoo Fault system. Several large prominent faults observed in the Penola Trough show offset of basement at depth. These basement-rooted faults have exerted significant controls on the geometry of smaller intra-rift faults throughout the entire structural history of the area. Faulting of the basement was initiated during the initial rift event of the Late Jurassic – Early Cretaceous. Faulting first propagated through a pre-existing basement fabric oblique to the north – south extension direction prevalent during this time. This resulted in the formation of the Hungerford/Kalangadoo and St George Faults with a northwest – southeast and north-northeast – south-southwest trend, respectively. A series of east – west-trending basement faults subsequently initiated perpendicular to the north – south extension direction as extensional strain increased in magnitude. Significant displacement along these basement-rooted faults throughout the initial rift event was associated with the formation of a complex set of intra-rift faults. These intra-rift faults exhibit a broadly east – west orientation consistent with the interpreted north – south extensional direction. However, this east – west orientation locally deviates to a more northwest – southeast direction near the oblique-trending St George Fault, attributed to stress perturbation effects. Many of the intra-rift faults die out prior to the end of the Early Cretaceous initial rift event while displacement on basement faults continued throughout. Faulting activity during the Late Cretaceous post-rift fault event was almost exclusively localised onto basement faults, despite a significant change in extension direction to northeast – southwest. A high-density, en échelon array of northwest – southeast-trending fault segments formed directly above the St George Fault and the large east – west-trending basement faults contemporaneously reactivated. Seismic variance data show that post-rift fault segments that are hard-linked to the St George Fault at depth have propagated through near-surface units. Non-basement-linked post-rift fault segments that lie away from the St George basement have not. This suggests that recent fault activity has continued to occur preferentially along basement faults up to relatively recent times, which has significant implications for fault seal integrity in the area. This is empirically validated by our structural analysis of fault-dependent hydrocarbon traps in the area, which shows that partially breached or breached hydrocarbon columns are associated with basement faults, whereas unbreached hydrocarbon columns are not.  相似文献   

14.
影响断裂凹陷内的断裂系统演化的原因包含多种因素,此次研究针对先存断裂及基底性质对断陷盆地的影响,通过 物理模拟实验方法探究裂谷盆地断裂发育的构造演化过程。根据对琼东南盆地的地震剖面图的解释分析,盆地东部和西部 的凹陷显示不同的凹陷构造形态,实验结果显示,先存断裂的位置和走向影响区域凹陷的演化和平面展布,在先存断裂影 响的区域演化形成地堑构造,在无先存断裂影响的区域则演化形成地垒构造;韧性基底的上覆地层拉伸演化为复式半地堑 构造,而刚性基底的上覆地层呈铲状半地堑构造,在不同基底性质影响下的构造变形模式和琼东南盆地东西部的差异构造 样式基本相符,一定程度上说明了基底性质的差异对琼东南盆地东部和西部凹陷在断裂组合形态差异方面具有影响作用, 为研究供给油气运移聚集成藏的断裂系统演化提供了思路。  相似文献   

15.
The New Hebrides back-arc troughs (southwest Pacific) are located between the New Hebrides trench-arc system and the active North Fiji marginal basin. They are restricted to the southern and northern segments of the arc and were generally related to effects of the Indo-Australian subducting plate (rolling-back and/or subduction of the d'Entrecasteaux ridge). A detailed bathymetric and magnetic survey over the northern back-arc troughs is used to propose a new model for the origin of the New Hebrides back-arc troughs. The northern troughs extend over a width of 60 km and are composed of N-S trending grabens and horsts, discontinuous along strike and associated with volcanism. The troughs are disrupted southward at 13° 30′S, where the Hazel Holme fracture zone intercepts the New Hebrides island arc. The E-W trending Hazel Holme fracture zone is an extensional feature bisecting the North Fiji basin. In its western end, the Hazel Hohne fracture zone is composed of a succession of horsts and grabens striking N90 ° –N100 ° E. Geometrical and structural relationships between the back-arc troughs and the Hazel Holme fracture zone suggest that both these extensional features result from the same process and are closely linked. The northern troughs-western end of the Hazel Holme fracture zone region is dominated by N130°–135°E trending magnetic lineations typical of oceanic crust. These lineations are oblique to the horsts and grabens systems, and are characteristic of the old North Fiji basin oceanic crust. Consequently we conclude that the northern back-arc troughs are partly developed on the North Fiji basin oceanic basement and that extensional tectonic processes postdate the oldest North Fiji basin oceanic crust. Morphological and structural evidence suggests that both the back-arc troughs and the Hazel Holme fracture zone are recent, still active and result from NE-SW extensional tectonics. Because other tectonic features throughout the North Fiji basin are related to the same stress field, it is inferred that such a NE-SW extension could be a large-scale deformation affecting the North Fiji basin. It is proposed that the back-arc troughs are primarily related to this recent extension within the North Fiji basin, but their locations along the arc are also influenced by the subduction of the d'Entrecasteaux ridge which produces, south of 13°30′S, nearly E-W trending compression and prevents the formation of troughs. Possibly, these recent extensional tectonic processes result from a major reorganization in the spreading process of the North Fiji basin, and could be as young as 0.6–0.7 Ma.  相似文献   

16.
The paper describes the specific features of the bottom topography and morphostructural segmentation along the strike of the Southeast Indian Ridge (SEIR) and in the zones of influence of the Amsterdam–St. Paul hot spot and the anomalous zone of the relatively cold mantle in the area of the Australian–Antarctic discordance. Numerical estimates of changes of thermal state and strength of the crust in axial and off-axial zones of the SEIR were performed. Сorrelation between the thermal–rheological settings in the axial zone of the ridge with the seabed topography and the morphostructural segmentation and magmatism has been established. The numerical modelling results make it possible to assume the presence of along-axis asthenospheric flows under the axial zone of the SEIR. One of them, which was initiated by the Amsterdam–St. Paul point and the Kerguelen plume, is oriented from west to east, and the second, located east of the Australian–Antarctic discordance, is oriented from east to west. Taking into account the numerical modelling results of the thermal regime and the change in thickness of the brittle layer of the axial lithosphere, we performed a physical modelling of the influence of temperature anomalies in the mantle on the peculiarities of crustal deformation in the axial zones of the ridge. The experimental modelling showed that the presence of a thermal anomaly in the sublithosphere mantle in the form of a local heat source (hot spot) will noticeably influence the geometry of the rift axis and its position in relation to the hot spot. An area of anomalous topography forms under the influence of the hot spot, traces of which are preserved in the off-axis spreading flank zones, as in the case of the Amsterdam–St. Paul hot spot. More contrasting and dissected topography forms in zones with a relatively low typical mantle temperature in the process of crustal accretion.  相似文献   

17.
A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene–Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is 150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as 0.1 mm/yr and 10−16 s−1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to 9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.  相似文献   

18.
金湖凹陷隐性断裂带形成机制及分布   总被引:1,自引:0,他引:1  
金湖凹陷基底存在北东、北西向两组断裂。北西向基底断裂活动较弱,对盖层变形影响较小,在盖层中多以隐性断裂带显现;北东向基底断裂活动强烈,对凹陷盖层变形影响较大,不仅形成了凹陷东部边界杨村断裂在内的多条显性断裂,而且形成了多条隐性断裂带。凹陷中部的北东向石港显性断裂带将凹陷分割成西部斜坡带和东部凹陷带。东部凹陷带受基底北西向断裂隐性活动的影响呈现南北分段特征。凹陷盖层中还发育了大量近东西走向的三、四级正断层,它们大致平行成带分布,形成了宝应平行雁列式断裂构造带、唐港雁列式断裂构造带、卞闵杨平行雁列式断裂构造带、西斜坡平行入字型断裂构造带、汊涧泥沛平行雁列式断裂构造带等一系列油气富集区带。上述构造带中的油气藏分布明显受到北东和北西向基底断裂活动影响,呈现北东、北西或近南北向成带、成串分布特征。应用区域地质、重磁等资料开展隐性断裂带预测,识别出10条北东向、5条北西向、6条南北向隐性断裂带。沉积盖层中形成的这些隐性断裂带控制了储集砂体分布、改善了储层物性、使隐性圈闭成带成串分布,是油气聚集成藏的有利区带。  相似文献   

19.
琼东南盆地位于南海北部大陆边缘西北部,是新生代形成的北东向伸展盆地,其断裂走向、次级凹陷分布方向、构造样式等在东西部表现出明显差异。文章采用构造解析与构造物理模拟相结合的方式,探究先存的中生代构造几何形态及基底性质差异对琼东南盆地东西部构造差异性演化的控制作用。实验结果表明:(1)先存构造薄弱带几何边界分布方向与区域伸展方向共同控制了琼东南盆地主要断裂的走向以及断裂构造样式。由于先存构造薄弱带边界方向存在东西差异,在早期NW向拉伸阶段(Tg-T80)盆地断裂系统在东西部就已表现出明显的分段特征。西部由于垂向拉伸产生一组NEE向断裂;东部由于斜向拉伸,发育至少两组方向的断裂,一组与应力方向垂直(NEE向),另一组沿着构造薄弱带分布(WE向)。后期断裂活动继承和改造了这一时期的断裂,使断裂系统更加复杂。先存构造薄弱带几何形态变化是导致琼东南盆地东西部构造差异性发育的主控因素。(2)基底强度差异性对上覆构造的断裂数量以及地貌起伏特征有一定影响。琼东南盆地在东西部的断裂走向及构造样式上的差异性受基底强弱、先存构造形态及构造应力方向的共同控制。  相似文献   

20.
二连盆地是中国东北部中生代含油气盆地,与中国东部中生代裂陷盆地之间存在显著的几何学与运动学相似性,根据盆内构造线走向和典型地震剖面构造样式可划分为中央正向裂陷带和周缘斜向裂陷带。尽管前人对盆地中生代构造变形开展了大量研究,但有关同期构造控制因素的认识尚不清晰。为此,研究以二连盆地为原型,设计了3组分别改变伸展速率、伸展方向及同沉积作用的平面沙箱模型。实验结果表明伸展方向控制裂陷内部断层特征;南东向的伸展速率改变深层构造薄弱带的扩展和断裂发育规模;同沉积作用促进基底滑脱层的活动强度,且进一步抑制边界断裂的生长。模拟结果还揭示了伸展方向是该盆地构造变形的主要控制因素;同沉积作用和伸展速率为次要控制因素。同时根据中国东部及邻区典型中生代裂陷盆地的几何学与运动学相似性,认为"南东向伸展"可以提供较好的运动学解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号