首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The results of the first GPS measurements along the geophysical profile that intersects all major geological structures of the Osetiya region of the Greater Caucasus are presented. The results of the measurements are interpreted in comparison with those of neotectonic studies and data on the deep structure.  相似文献   

2.
The paper reports newly obtained stratigraphic, petrographic, and isotope-geochronological data on modern moderately acid lavas from the Keli Highland at the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. The total duration of volcanic activity at the highland was estimated at 250 ka. The volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245−170 ka), Late Neopleistocene (135−70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that the overwhelming majority of volcanoes that were active less than 30 ka B.P. are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.  相似文献   

3.
New isotope-geochronological data (K-Ar, Rb-Sr) provide tight geochronological constraints on the history of Late Cenozoic magmatism on the southern slope of the Greater Caucasus. Several previously unknown, rhyodacite intrusive bodies with an emplacement age of 6.9 ± 0.3 Ma (Late Miocene) are reported from the Kakheti-Lechkhumi regional fault zone in the Kvemo Svaneti-Racha area. Therefore, a pulse of acid intrusive magmatism took place in a period previously considered amagmatic in the Greater Caucasus. The petrological, geochemical, and isotopic data suggest that these rhyodacites are produced by crystallization differentiation of mantle-derived magmas, which are similar in composition to Miocene mafic lavas that erupted a few hundred thousand years later in the adjacent Central Georgian neovolcanic area. The presented results allow the conclusion that the volcanic activity within the Central Georgian neovolcanic area occurred at 7.2–6.0 Ma in two discrete pulses: (1) the emplacement of acid intrusions and (2) the eruption of trachybasaltic lavas. The emplacement of rhyodacite intrusions in the Kvemo Svaneti-Racha area marked the first pulse of young magmatism on the southern slope of the Main Caucasus range and simultaneously represented the second magmatic pulse (after granitoid magmatism of the Caucasian Mineral Waters region) within the entire Greater Caucasus.  相似文献   

4.
The paper presents detailed isotope-geochronological, geological, and petrologic–mineralogical data on lavas of one of the greatest Quaternary magmatic area in the Greater Caucasus, the Kazbek neovolcanic center, including polygenetic Kazbek stratovolcano and a number of subordinate volcanic cones in its vicinities. The research was conducted based on a representative collection of more than 150 geological samples that characterize most of the volcanic cones and lava flows of different age, some of which were known previously, and other were discovered by the authors. The high-precision K–Ar data obtained on these materials make it possible to reproduce the evolutionary history of youngest magmatism at the Kazbek center and evaluate the total duration of this evolution at ~450 ka. The magmatic activity was subdivided into four phases (at 460–380, 310–200, 130–90, and <50 ka) with long-lasting interludes in between. Because the latest eruptions occurred in the Kazbek vicinity in the Holocene, this volcano is regarded as potentially active. The volcanic rocks of the Kazbek center make up a continuous compositional succession of basaltic (trachy)andesite–(trachy)andesite–dacite and mostly belong to the calc–alkaline series. The principal petrographic characteristics of the rocks and the composition of their phenocryst minerals are determined, mineral assemblages of these minerals are distinguished in the lavas of different type, and the temperature of the magmatic melts is evaluated. A principally important role in the petrogenesis of the Kazbek youngest magmas is proved to have been played by fractional crystallization and replenishment of mafic melts in the magmatic chambers beneath the volcano, which resulted in their mixing and mingling with the residual dacite melt and the origin of high-temperature hybrid andesite lavas. The comprehensive geological studies, involving interpretation of high-resolution satellite images, allowed the authors to compile the first detailed (1: 25 000) volcanologic map of the Kazbek center and a geochronologic chart supplemented with a stratigraphic column, which illustrate the origin sequence of the volcanic vents and their lava flows, geological relations between them, as seen in reference geological sections, and variations in the composition of the magmatic products with time.  相似文献   

5.
内蒙锡林浩特鸽子山火山地质研究   总被引:4,自引:3,他引:1  
鸽子山火山位于内蒙古自治区锡林浩特市东南,处于大兴安岭-大同新生代火山喷发带中段,是锡林浩特-阿巴嘎火山群中保存最为完好的一座玄武质火山。火山喷发物的分布面积约55km2,主要为降落火山渣、溅落熔结火山碎屑岩和熔岩流,成分主要为碧玄岩,晚期有少量的橄榄拉斑玄武岩,碧玄岩中含有较多二辉橄榄岩包体和辉石及歪长石巨晶。火山由锥体、熔岩流和火山碎屑席组成,锥体由早期的降落锥和晚期溅落锥复合而成。火山口经历多次塌陷而成为破火口。锥体西侧及北东侧出露两个仍保留了原始形态的熔岩溢出口,熔岩流类型为结壳熔岩,由多个岩流单元组成,局部地区的熔岩流中发育较多保存完好的喷气锥、喷气碟或喷气塔。火山碎屑席主要分布在锥体的东侧,厚度由锥体向外逐渐减薄。火山活动可分为早、晚两个阶段,早期为爆破式喷发,形成火山渣锥和碎屑席,属亚布里尼型喷发,晚期主要为溢流式喷发,形成溅落锥和大规模熔岩流,其活动时代为晚更新世末-全新世。  相似文献   

6.
The chronology of evolution of the young explosive volcanism in the Elbrus area of the Greater Caucasus is revealed. The isotopic-geochronological data indicate that ignimbrites and associated volcanic rocks were formed during the Middle Pliocene (3.0–2.75 Ma) and Early Pleistocene (0.84–0.70 Ma) stages of magmatic activity of the Greater Caucasus. The presence of two groups of pyroclastic rocks significantly different in age and analysis of their location indicate two spatially combined volcanic centers different in age in this part of the Elbrus volcanic area: Pliocene Tyrnyauz center localized in the eastern and southern parts and Quaternary Elbrus volcanic center which is the only newest center of volcanic activity both in the Elbrus and in the entire neovolcanic area. The analysis of chronology of magmatic events and compositional peculiarities of the young igneous rocks of the Elbrus area for the period from 3 Ma to the Holocene shows that the caldera stage of the evolution of the Elbrus Volcano has not come yet and future catastrophic magmatism is highly possible.  相似文献   

7.
The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces, with compound flows at the base and simple flows in the upper portions. The detailed field work allied with petrography and geochemical data are extremely important to identify heterogeneities inside the volcanic pile and allows the construction of a detailed lithostratigraphical framework.  相似文献   

8.
Field investigations of the Deccan Trap lava sequence along a 70 km traverse in the Narsingpur-Harrai-Amarwara area of central India indicate twenty lava flows comprising a total thickness of around 480 m. Primary volcanic structures like vesicles and cooling joints are conspicuous in this volcanic succession and are used to divide individual flows into three well-defined zones namely the lower colonnade zone, entablature zone, and the upper colonnade zone. The variable nature of these structural zones is used for identification and correlation of lava flows in the field. For twenty lava flows, the thicknesses of upper colonnade zones of eight flows are ∼5 m while those of eight other flows are ∼8 m each. The thicknesses of upper colonnade zones of remaining four flows could not be measured in the field. Using the thicknesses of these upper colonnade zones and standard temperature-flow thickness-cooling time profiles for lava pile, the total cooling time of these sixteen Deccan Trap lava flows has been estimated at 12 to 15 years.  相似文献   

9.
大兴安岭嫩北农场一带出露一套以中酸性火山熔岩为主的晚古生代地层.前人对这套地层划分、时代归属存有很大分歧.原因是:一方面区域上火山岩出露厚度大、露头不连续、区域植被茂盛,顶底多为断层接触或被第四系所覆盖;另一方面由于存在于火山岩地层中的化石较少或缺少精确的同位素年代学数据.本文在新近研究成果的基础上,依据地层岩石组合对比及锆石U-Pb年代学资料,将这套晚古生代地层进行了重新厘定为大石寨组.  相似文献   

10.
火山"熔岩流气泡古高度计"及其在云南腾冲火山区的应用   总被引:6,自引:5,他引:1  
通过对火山熔岩流及其气泡特征的研究能够确定熔岩流喷发时的古高度,本文将这一方法称为火山“熔岩流气泡古高度计”.“熔岩流气泡古高度计”是在实地测量熔岩流厚度和实验室对熔岩流顶底气泡体积精确测定的基础上,利用流体力学原理和气体状态方程,通过计算古大气压强,最终获得火山喷发时的古高度.由于火山岩是开展同位素测年的理想材料,并且利用熔岩流计算古高度所需的参数(熔岩流厚度和气泡体积)不受古气候等因素(温度、降雨量等)影响,因此,这一方法以其可靠的年龄和独立的计算参数明显区别于其它古高度计.“熔岩流气泡古高度计”核心技术包括:(1)熔岩流的挑选与厚度测量;(2)熔岩流底部和顶部气泡体积的计算.中等规模、具简单冷凝历史,并且厚度稳定的偏基性熔岩流,是开展古高度计算的理想对象.熔岩流气泡体积的测试手段包括注胶、岩石抛光-扫描、体视学转换和三维CT扫描4种方法.“熔岩流气泡古高度计”最终计算结果误差为400m左右.本文利用“熔岩流气泡古高度计”计算了腾冲火山区熔岩流的古高度,研究结果显示:“熔岩流气泡古高度计”计算的黑空山熔岩流高程与目前的实际高程相吻合.开展“熔岩流气泡古高度计”研究的前提是研究区必须出露保存完好的熔岩流.我国青藏高原的隆升历史一直是国际学术界争论的热点课题,那里出露大面积熔岩流.可以预见,“熔岩流气泡古高度计”将会逐渐成为研究青藏高原隆升历史的有效手段之一.  相似文献   

11.
This paper discusses issues related to the neotectonic structure and evolution of the Scythian Plate, beginning from the Late Miocene. The undertaken structural and geomorphologic analysis of topographic maps and space images supplemented with geologic-geophysical data, including back-stripping curves, allowed us to reveal an association of growing recent uplifts of different ranks and decreasing depressions of a roughly Caucasian trend. Both are cut by weak zones (faults and fracture zones) oriented roughly E-W and N-S. All these deformations evolved under impact from collision processes within the Greater Caucasus Orogenic Belt.  相似文献   

12.
应用物理原理研究不同规模和时间尺度火山活动的动力过程,近年来不断受到中国火山学者的关注。过去几年,中国第四纪火山区内火山活动的物理过程研究取得了一些有价值的进展。本文重点总结和评述了岩浆房的固结、分离结晶和活动稳定性、火山通道和喷发柱的动力学、火山碎屑流与熔岩流运移与就位的物理过程。对火山碎屑物与熔岩流的分形特征以及岩浆房的动力系统中存在的非线性过程进行了特别的评价和展望。  相似文献   

13.
The ∼133 Ma volcanic rocks of Sangxiu Formation are distributed in the eastern part of the central Tethyan Himalaya and belong paleogeographically to the northeastern margin of Greater India. These volcanic rocks include alkaline basalts and felsic volcanic rocks. Major and trace element abundances and whole-rock isotopic data for selected samples of these volcanic rocks are used to infer their petrogenesis. Geochemically, the Sangxiu basalts are closely similar to the Emeishan high-Ti basalts. Major and trace element data and Sr–Nd isotopic compositions suggest that the Sangxiu basalts may have been derived from an OIB-type mantle source, with discernable contributions from subcontinental lithospheric mantle (SCLM). The basaltic magmas may have formed as a result of the infiltration of plume-derived melts into the base of the lithosphere in a continental rift setting. The Sangxiu felsic volcanic rocks share most of the geochemical features of A-type granite, and have Sr–Nd isotopic compositions which differ considerably from the Sangxiu basalts, suggesting that they originated from the anatexis of ensialic continental crust. The Sangxiu volcanic rocks may be considered as the consequence of an interaction between the Kerguelen hotspot and the lithosphere of the northeastern margin of Greater India at ∼133 Ma, and may represent the initial stage of the separation of Greater India from southwestern Australia.  相似文献   

14.
Located in the heart of the Lesser Caucasus mountains, where the Arabian and Eurasian tectonic plates collide, Armenia occupies an exceptional geological position shaped through millions of years of subduction and collision. It is a unique place on the Earth recording extensive intrusive and volcanic activity related to the long-standing continental convergence. The volcanoes of Armenia provide a rare opportunity to study the sources and processes involved in this unusual type of magmatism. More than 500 Quaternary volcanoes have been mapped in Armenia, most of them formed from single eruptive episodes. Among several large composite volcanoes, the mighty Aragats stands out as the largest volcano in Armenia and the region altogether. Volcanic deposits testify to the range of eruptive styles—from the ignimbrites formed in eruptions as explosive and voluminous as any seen globally in the modern era to the enormous fissure-fed lava flows that form the Southern Caucasus flood basalt province, the smallest and youngest Large Igneous Province in the world. Several pre-historical and historical eruptions have been documented, highlighting the potential for future volcanic activity in the region. In recent years, research has focused on the volcanic hazards associated with the Armenian Nuclear Power Plant, located in the foothills of Aragats volcano. This article highlights some of the extraordinary volcanic and intrusive features observed in Armenia and summarizes aspects of recent volcanological and petrological research.  相似文献   

15.
Distal pillows occur associated with a sheet flow and megapillows in the me?akoz outcrops of the Basque–Cantabrian Basin (N Spain). Basaltic volcanic rocks are interbedded with Turonian sediments and depict typical features of shallow submarine emissions. An exceptional basaltic flow displays four types of morphology: (1) sheet lava with columnar jointing, (2) welded columnar breccia, (3) megapillows, and (4) pillow lavas with sparse megapillows. The field data from me?akoz combined with experimental and field data from the literature for similar volcanic facies can be integrated into a new propagation model for the transition from sheet flows to pillow lavas in underwater environments. At near vent high emission rates, lava flows develop a thin crust immediately after its emplacement and break at the front under the magma pressure allowing for the massive propagation of lava as a sheet flow. Increased cooling promotes thickening of the lava outer crust far from the vent while continuous supply of fresh magma increases the pressure onto the thick crust until its rupture. The lava emitted in small volumes from the flow front promotes the formation of megapillows and pillow lavas that are later on covered by the advancing sheet flow. The lava flow freezes progressively toward more distal parts, gradually increasing its viscosity until it stops. The crust temporarily holds the residual melt pressure increasing the volume of the flow distal section by inflation. Finally, the internal magma pressure breaks the crust and liberates lava at moderate-to-low flow rates producing pillows, while lava drainage inside the inflated sheet flow produces lava tunnels and gravitational collapse of the roofs by hydrostatic pressure to form breccias nurtured by columnar lava fragments.  相似文献   

16.
《Geodinamica Acta》2001,14(1-3):177-195
The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quaternary volcanoes, and (3) a 5-km thick, undeformed Plio-Quaternary continental volcano-sedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional–contractional, and Oligocene-Quaternary in age; whereas it is compressional–extensional, and Plio-Quaternary in age in the east Anatolian plateau and the Lesser Caucasus.Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional–contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (∼ 12 Ma) continent–continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N–S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places.  相似文献   

17.
The uplifted and deeply eroded volcanic succession of Porto Santo (central East-Atlantic) is the product of a wide spectrum of dynamic processes that are active in shoaling to emergent seamounts. Two superimposed lapilli cones marking the base of the exposed section are interpreted as having formed from numerous submarine to subaerial phreatomagmatic explosions, pyroclastic fragmentation being subordinate. The lower basaltic and the upper mugearitic to trachytic sections are dominated by redeposited tephra and are called 'lapilli cone aprons'. Vertical growth due to accumulation of tephra, voluminous intrusions, and minor pillowed lava flows produced ephemeral islands which were subsequently leveled by wave erosion, as shown by conglomerate beds. Periods of volcanic quiescence are represented by abundant biocalcarenite lenses at several stratigraphic levels. The loose tephra piles became stabilized by widespread syn-volcanic intrusions such as dikes and trachytic to rhyolitic domes welding the volcanic and volcaniclastic ensemble into a solid edifice. Shattering of a submarine extrusive trachytic dome by pyroclastic and phreatomagmatic explosions, accentuated by quench fragmentation, resulted in pumice- and crystal-rich deposits emplaced in a prominent submarine erosional channel. The dome must have produced an island as indicated by a collapse breccia comprising surf-rounded boulders of dome material. Subaerial explosive activity is represented by scoria cones and tuff cones. Basaltic lava flows built a resistant cap that protected the island from wave erosion. Some lava flows entered the sea and formed two distinct types of lava delta: 1. closely-packed pillow lava and massive tabular lava flows along the southwestern coast of Porto Santo, and 2. a steeply inclined pillow-hyaloclastite breccia prism composed of foreset-bedded hydroclastic breccia, variably-shaped pillows, and thin sheet flows capped by subhorizontal submarine to subaerial lava flows along the eastern coast of Porto Santo.The facies architectures indicate emplacement: 1. on a gently sloping platform in southwestern Porto Santo, and 2. on steep offshore slopes along high energy shorelines in eastern Porto Santo.Growth of the pillow-hyaloclastite breccia prism is dominated by the formation of foreset beds but various types of syn-volcanic intrusions contributed significantly. Submarine flank eruptions occurred in very shallow water on the flanks of the hyaloclastite prism in eastern Porto Santo. The island became consolidated by intrusion of numerous dikes and by emplacement of prominent intrusions that penetrate the entire volcanic succession. Volcanic sedimentation ended with the emplacement of a debris avalanche that postdates the last subaerial volcanic activity.  相似文献   

18.
The products of the activity of the Late Quaternary Kazbek neovolcanic center in the Greater Caucasus are studied by isotopic-geochronological methods. It is found that the youngest magmatism evolved during the last 400–450 k.y. over four discrete phases: 395–435, 200–250, 90–120, and less than 50 ka. The petrological-geochemical and published isotopic data point to the mixed mantle-crustal origin of the Kazbek lavas with the leading role of crystallization differentiation of deep magmas and assimilation of the crustal material. We recorded two episodes (~100 and less than 50 ka) of replenishment of the subsurface magmatic chamber under the Kazbek center by the main mantle melt and its mixing with the relict dacite magma that led to the formation of highly mobile hybrid andesite lavas and served as a trigger of the renewal of volcanic activity. Reactivation of the mantle source of the Kazbek center at the end of the Neopleistocene and the Holocene age of the last eruptions indicate the potential danger of this region because of the renewal of the volcanic activity. The medium Devdoraki copper deposit is located in the vicinity of the Kazbek volcano. It represents a unique polychronous, currently evolved ore-magmatic system that originated in the Jurassic.  相似文献   

19.
Volcanic rocks from the Gümü?hane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62?±?3.33 Ma (Middle Eocene) to 30.02?±?2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80?±?1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN?=?3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and εNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.  相似文献   

20.
Abstract

The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quatemary volcanoes, and (3) a 5-km thick, undeformed Plio-Quatemary continental volcanosedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional-contractional, and Oligocene-Quaternary in age; whereas it is compressional-extensional, and Plio-Quatemary in age in the east Anatolian plateau and the Lesser Caucasus.

Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional- contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (~ 12 Ma) continent-continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.

Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N-S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号