共查询到20条相似文献,搜索用时 15 毫秒
1.
Rex V. Johnson II Clive R. B. Lister Brian T. R. Lewis 《Marine Geophysical Researches》1977,3(1):65-85
We have designed a simple, cheap and reliable ocean-bottom seismometer. Signals from three-component geophones are recorded directly on magnetic tape running continuously at a speed of 1 mm s1. Time reference is derived from a temperature-compensated quartz crystal oscillator and encoded on a fourth channel as an amplitude modulation of a 20 Hz carrier. A bipolar square-root signal-compression scheme doubles the tape dynamic range to 80 db, and the available bandwidth is 2 to 100 Hz. Tape and batteries are capable of 500-hr operation, and the unique magnetic release comes close to being a fail-safe system. A heavy, high-drag concrete anchor shaped like a flower-pot provides easy launching, fast stable descent and good coupling to the ocean floor. We have had numerous successful field emplacements which have yielded good earthquake and shot-refraction data. 相似文献
2.
3.
Robert D. Moore Leroy M. Dorman Chin-Yen Huang David L. Berliner 《Marine Geophysical Researches》1981,4(4):451-477
We describe the design and construction of an ocean bottom seismometer configured as a computer, based on an Intersil IM6100 microprocessor plus appropriate peripheral devices. The sensors consist of triaxial 1 Hz seismometers and a hydrophone, each sensor channel being filtered prior to digitizing so that typical noise spectra are whitened. Digital data are recorded serially on magnetic tape. The instrument is placed on the ocean bottom by allowing it to fall freely from just below the surface. An acoustic system allows precise determination of instrument position, acoustic recall, and transmission of operational information to the surface. Release from an expendable anchor is accomplished by redundant pyrotechnic bolts which can be fired by acoustic command or by precision timers.The operational flexibility provided by the micro-computer, which executes the DEC PDP8/E instruction set, enables optimum use of the 6-hr recording capacity (at 128 samples/second/channel) in the context of the particular experiment being performed.
相似文献
相似文献
4.
海底地震仪实测信号特性分析 总被引:1,自引:1,他引:1
置于海底数百米至数千米的海底地震仪(OBS)的实测信号相比陆地地震仪具有不同的特性;由于水的作用或记录信号源频率的不同,短周期OBS和宽频带OBS记录的信号又有明显的差异。文章对南海西南次海盆地震探测期间记录的人工气枪震源和天然地震实测信号进行了时频分析,结果如下。1)气枪作业后在海底激发两种噪声:一是水的波动不断叠加形成的长波,周期50s左右,以水平分量为主;二是高频噪声,主要是OBS底座细微晃动引起的。2)宽频OBS对于水下移动目标激发海底波动具有很好的探测能力,特别是水平分量可以获得大振幅且周期特征清晰的记录,并能够指示方向。3)宽频OBS能记录到清晰的天然地震信号,为研究调查区岩石圈结构增添了更多的信息,短周期OBS对远震直达P波有很好的记录。国产宽频I-4C型OBS碰巧记录了日本M9.0级大震。 相似文献
5.
Timothy W. Barash Charles G. Doll Jr. John A. Collins George H. Sutton Sean C. Solomon 《Marine Geophysical Researches》1994,16(5):347-363
A problem in the use of ocean bottom seismometers is the difficulty in leveling the sensors while ensuring good coupling to the seafloor. We have investigated the coupling characteristics of the seismic sensors in the new ONR ocean bottom seismometer. In the deployable sensor package for that instrument, a three-component seismometer set is suspended on a 2-axis passive leveling gimbal and is immersed in a viscous fluid. We report tests, conducted in a seismic vault, comparing the output of a gimbaled seismometer set to that of a set rigidly coupled to the ground. Our results show that the degree to which the gimbaled set is coupled to ground motion is a function of the viscosity of the coupling fluid. The coherence between the two sensor sets is poor (<0.4) at some frequencies within the band of interest (0.15 to 20 Hz) and on some components when the viscosity of the coupling fluid is comparatively low (14 Pa-s or 0.16 kSt kinematic viscosity). In addition, the outputs of some components over portions of this frequency band are attenuated and are phase-shifted relative to the outputs of the set rigidly coupled to the ground. Coherence and phase response similarity improve as the viscosity of the coupling fluid is increased. With a coupling fluid viscosity of 980 Pa-s (10 kSt), coherence and phase agreement between the two sensor sets is good (>0.9) across nearly the entire band of interest on all three components. A simple analytical model of the gimbaled seismometer set as a damped, driven, compound-pendulum provides a basis for understanding the test results. 相似文献
6.
7.
SEDIS IV型短周期自浮式海底地震仪数据校正方法 总被引:6,自引:0,他引:6
利用15台SEDISIV型短周期自浮式海底地震仪在南海中、北部地壳深部结构调查中所获得的资料,探讨了海底地震仪数据校正的方法和校正后的效果,结果表明:使用该地震仪所获得的原始资料经过放炮时间、炮点坐标数据局部化、海底地震仪位置误差以及记录时间漂移4方面的校正后,数据更趋合理,误差显著降低。放炮时间的校正消除了时钟漂移和时间延迟的误差;炮点坐标数据局部化处理消除了炮点位置整体趋势性偏移的现象;试错法进行位置误差和记录时间的精细校正时,时间漂移的校正量值约为几个到十几个毫秒,位置校正的量值仅在几米到数百米之间,实测数据所绘曲线的形态和位置都与理论曲线十分吻合,可见校正后误差显著降低。 相似文献
8.
Masanao Shinohara Toshihiko Kanazawa Tomoaki Yamada Yuya Machida Takashi Shinbo Shin’ichi Sakai 《Marine Geophysical Researches》2014,35(3):231-242
The Japanese islands are positioned near the subduction zones, and large earthquakes have repeatedly occurred in marine areas around Japan. However, the number of permanent earthquake observatories in the oceans is quite limited. It is important for understanding generation of large earthquakes to observe seismic activities on the seafloor just above these seismogenic zones. An ocean bottom cabled seismometer (OBCS) is the best solution because data can be collected in real-time. We have developed a new compact OBCS system. A developed system is controlled by a microprocessor, and signals from accelerometers are 24-bit digitized. Clock is delivered from the global positioning system receiver on a landing station using a simple dedicated line. Data collected at each cabled seismometer (CS) are transmitted using standard Internet Protocol to landing stations. The network configuration of the system adopts two dual methods. We installed the first practical OBCS system in the Japan Sea, where large earthquakes occurred in past. The first OBCS system has a total length of 25 km and 4 stations with 5 km interval. Installation was carried out in August 2010. The CSs and single armored optical submarine cable were buried 1 m below the seafloor to avoid a conflict with fishing activity. The data are stored on a landing station and sent to Earthquake Research Institute, University of Tokyo by using the Internet. After the installation, data are being collected continuously. According to burial of the CSs, seismic ambient noises are smaller than those observed on seafloor. 相似文献
9.
10.
A lumped-parameter model was developed to predict the response of an ocean bottom seismometer, resting on relatively non-stiff sediments, to vertical ground-motion. The model predictions were compared with the response of an instrument on a foundation of foam rubber to a sinusoidal input. Comparison of the model data to the measured Lopez Island vertical transient test data showed that bearing pressure of the instrument in a nonuniform vertical soil profile causes certain instruments to experience a shear modulus higher than the mean. 相似文献
11.
在海底地震仪(ocean bottom seismometer,OBS)广角地震记录剖面上,经常可以见到震相清晰且连续的多次波信号,多次波和初至波是由相同的震源信号产生的,也是地壳真实结构的反映。但是在通常的OBS数据处理过程中,经常将多次波作为无效信号剔除掉,对其属性及应用的研究比较少。文章通过对台湾海峡南部OBS探测测线HXN01数据的处理,对多个台站记录到的二次震相进行了识别与拾取,并以OBS0106台站为例,对识别出的二次Ps震相进行了系统的研究分析,发现二次Ps震相的波形特征和质点运动轨迹与初至震相相似,但波形最大振幅值明显大于初至震相。通过Rayinvr射线追踪方法模拟,确定了二次Ps震相的主要反射层,并发现加入二次震相后,台站下方浅部沉积层射线覆盖密度有显著提升,射线覆盖的区域也明显增加,为沉积层精细结构的反演提供了更为丰富的数据基础。另外,对理论模型的地壳结构进行加入二次Ps震相前后的反演测试,结果显示加入二次Ps震相数据后,沉积层的界面深度误差得到明显的改善。 相似文献
12.
S. H. Johnson M. D. Cranford B. T. Brown J. E. Bowers R. E. McAllister 《Marine Geophysical Researches》1977,3(1):103-117
A compact and relatively low-cost ocean bottom seismograph has been constructed for use in marine seismic research. The instrument is deployed as a free-fall package and can record for 12.5 days. Signals from a vertical geophone, a hydrophone, and a clock are direct recorded on four channels of 6.35×10-3 m magnetic tape. A timed-release system returns the instrument to the surface. 相似文献
13.
14.
Unlike response of seismometers resting on hard rock where the seismometer case moves with the rock to high frequencies, the response of ocean bottom seismometers (OBS) can be strongly affected by the low mechanical strength of ocean sediments. The motion as measured by the seismometer will not follow the expected relationships between pressure and particle motion for different wave types. Cross coupling between horizontal and vertical motions can occur, especially when there is differential motion between water and sediment. Resonant amplification and attenuation of higher frequencies also occur. Secondary seismic arrivals are especially subject to distortion. Overall response is strongly dependent upon the mass and configuration of the OBS and the rigidity and density of the bottom material. Tests at Lopez Island, Puget Sound using both directly applied mechanical transients and seismic signals with various instrument configurations demonstrate the above effects and provide some guidance for improved designs.Hawaii Institute of Geophysics Contribution No. 1172. 相似文献
15.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented. 相似文献
16.
17.
Instrument calibration of ocean bottom seismographs 总被引:1,自引:0,他引:1
To increase the accuracy of measuring sea floor motion with ocean bottom seismometers, we calibrate the seismometer system on the ocean floor. Data from the sea floor calibration, augmented with electronic and land calibration data, enables us to find the OBS transfer function to an accuracy of 0.5% in the frequency range of 0.1 to 32 Hz. We are able to distinguish between temperature, instrument and OBS ground coupling effects, all of which alter the transfer function. This paper reviews our method of calibration and discusses the effects of temperature and some of the instrument design features on the vertical seismometer transfer function. 相似文献
18.
利用海底地震仪(OBS)进行探测时,一般采用自由下落的方式将OBS布设在海底。由于海流和海底地形的影响,OBS的位置一般都偏离设定的位置。OBS重新定位是OBS数据处理的基础,不正确的位置信息将导致错误的观测系统信息,从而影响后续的处理效果。直达水波包含了OBS的位置信息,一般利用直达水波的走时,采用最小二乘的方式来确定OBS的实际位置。炮点位置精度、放炮时间延迟、炮点分布方式、OBS时钟漂移、走时拾取误差以及海水速度变化等因素都会影响重新定位的精度。文章采用数值方式研究这些因素对重新定位精度的影响,并对东沙群岛海域实际的OBS站位进行精细重新定位。数值结果表明,直线排列的炮点不能很好地反演出OBS的位置,应该采用十字或者井字分布的炮点;在偏移距小于10km时,海水速度结构的精度对重新定位的影响可以忽略;对OBS重新定位影响最大的是由放炮时间延迟、时钟漂移以及走时误差共同构成的右端项误差,5ms的右端项误差可引起40m左右的偏差。实际数据重新定位的结果较好,符合数值研究的结果。 相似文献
19.
Data from the 1978 Lopez Island OBS Intercomparison Experiment and deep sea data from University of Washington OBSs show that there is a considerable amount of waveform distortion resulting from the conversion of horizontal motion into vertical motion, here called cross-coupling distortion. This distortion, which substancially reduces the significance of waveform matching with synthetic seismograms, appears to result from rotation imparted to the OBS package by near-vertically traveling shear energy. The degree of this rotation seems to depend on the instrument surface area above the seafloor and the geometry and surface area of the feet connecting the package to the seafloor. The sensitivity and response of the seismometers within the package to this rotation depends on the precise location of the seismometers with respect to the axis of rotation. The results suggest how to modify OBS designs to minimize these effects.University of Washington Contribution No. 1225. 相似文献