首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
During Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean and Atmosphere Research Experiment (COARE) Intensive Observing Period (IOP), upward-looking acoustic Doppler current profilers (ADCP) and current meters were moored at two equatorial sites (147°E and 154°E) and two off-equatorial sites (2°N and 2°S, 156°E) in the warm pool region of the western equatorial Pacific. Using current data obtained by these moorings, we have shown that there is a dominant signal with a period of about 2 days from the end of November to the middle of December in 1992, except at the equatorial site on 147°E (Ueki et al., 1998). The energy of this quasi-2-day signal for the meridional current is larger than that for the zonal one and the signal has a high coherence between two off-equatorial sites. In this paper, using band-passed time series of the meridional curerent, we investigated characters of the quasi-2-day signal and attempted to interpret this signal as an equatorially trapped wave. Complex empirical orthogonal function (CEOF) analysis reveals two different phase propagating features between the equatorial and off-equatorial site. One is an upward propagating signal, which is dominant near the surface at two off-equatorial sites, and the other is a downward propagating signal, which is dominant near 200 m at the equatorial site. If one interprets the quasi-2-day signal as an equatorially trapped wave, it is suggested that it cannot be explained as a single wave but can be described as the superimposition of several wave signals. The main part of these signals consists of two signals, one caused by a meteorological forcing and another by another factor in the ocean field.  相似文献   

2.
During the IOP (Intensive Observation Period) of TOGA/COARE (Tropical Ocean and Global Atmosphere/Coupled Ocean Atmosphere Response Experiment) from December 1992 to February 1993, four Japanese moored ADCPs (Acoustic Doppler Current Profilers) measured vertical profiles of three-component velocities at the stations 2S (2°S, 156°E), 2N (2°N, 156°E), 154E (0°N, 154°E) and 147E (0°N, 147°E). Power spectra of the surface current showed a pronounced peak having a period of around 14 days for both the zonal and meridional velocities at the stations 2S and 2N near the equator, and for only the meridional velocity at the equator. This 14-day phenomenon is considered to be a kind of equatorial wave of the first baroclinic mode, from a comparison of the result of the vertical mode analysis and the vertical distribution of the standard deviation of band-pass filtered velocity fluctuations. A dispersion relationship obtained from the horizontal mode analysis of this wave confirmed that the 14-day phenomenon is a mixed Rossby-gravity wave with the westward propagating phase speed and eastward propagating group velocity. From the cross-spectral analysis of velocity data, the average phase speed and wavelength of the wave were estimated as 3.64 m s−1 and 3939 km, respectively, for station pair 2S∼147E. These values were in good agreement with the average phase speed and wavelength of 3.58 m s−1 and 3836 km estimated from the dispersion curve and the observed period. A northerly wind burst blew over all the mooring sites during the middle of the observation period. The mixed Rossby-gravity wave, which is anti-symmetric for the zonal velocity about the equator, is likely to be forced by this northerly wind burst crossing the equator. Generation of the oceanic mixed Rossby-gravity wave of the first baroclinic mode is discussed in association with the atmospheric Rossby wave having the same period.  相似文献   

3.
王毅  崔凤娟 《海洋与湖沼》2015,46(2):241-247
本文通过分析RAMA印度洋观测浮标系统锚系ADCP实测资料,对赤道中印度洋上层海流季节变化进行了研究。研究结果表明,0°,80.5°E纬向流垂向剖面呈现上150m层一致的东向流,而经向流在100m以浅呈现表层向北次表层向南的翻转流结构。赤道中印度洋上层纬向流季节信号被半年周期的东向射流Wyrtki Jets(WJs)所控制。WJs发生于季风方向转换的季节,4—5月份较弱,10—11月份较强。赤道中印度洋上层经向流年周期信号显著。北半球夏季与冬季分别出现风应力旋度驱动的Sverdrup南向流与北向流。本文结论为赤道中印度洋上层环流季节变化特征的研究提供了观测角度的支持。  相似文献   

4.
The characteristics of currents and tidal currents in the Andaman Sea(AS) are studied during the second half of2016 using observed data from a moored acoustic Doppler current profiler(ADCP) deployed at 8.6°N, 95.6°E.During the observation period, the mean flow is 5–10 cm/s and largely southward. The root mean square and kinetic energies of the low and high frequency flows, which are divided by a cutoff period of 5 d, are at the same level, indicating their identical importance to the total current. A power spectrum analysis shows that intraseasonal oscillations, a tidal-related semilunar month signal, a semidiurnal tidal signal and periods of 3–4 d are prominent. The barocliny of an eddy kinetic energy is stronger than the mean kinetic energy, both of which are the strongest on the bottom and the weakest at 70 m depth. Residual currents are largely southward(northward) during the summer(winter) monsoon season. Two striking peaks of the southward flow cause the 80 d period of meridional currents. The first peak is part of a large-scale circulation, which enters the AS through the northern channel and exits through the southern channel, and the second peak is part of a local vortex. The 40 d oscillation of the zonal current is forced by geostrophic variations attributed to local and equatorial remote forcing. The tidal current is dominated by semidiurnal constituents, and among these, M2 and N2 are the top two largest major axes. Moreover, astronomical tidal constituents MM and MSF are also significant. Diurnal constituents are weak and shallow water tides are ignorable. The aims are to introduce the new current data observed in the AS and to provide initial insights for the tidal and residual currents in the Andaman Sea.  相似文献   

5.
《Oceanologica Acta》1999,22(1):57-66
Observations made during a “La Niña” situation (April–May 1996) in the equatorial Pacific upwelling, between 165° E and 150° W, show the classic deepening of hydrological isolines from east to west, resulting in zonal gradients for surface temperature and macronutrients. However, contrasting with such a gradient, no clear zonal variation could be seen for integrated planktonic biomasses and carbon fluxes, namely: chlorophyll a, bacterial abundances, particulate organic phosphorus, mesozooplankton ash-free dry weight, primary production, and the sinking flux of particulate organic carbon (POC). Moreover, mean values of these parameters along the zonal equatorial transect, are not significantly different from those of a 7-day-long time series station made at 0°, 150° W in October 1994 during an El Niño period. Such a steady zonal distribution of planktonic parameters seems to be characteristic of equatorial Pacific upwelling west of the Galapagos Islands so that the spatial distributions of nutrient concentrations and planktonic biomass appear to be uncoupled. This is consistent with the High Nutrient-Low Chlorophyll (HNLC) concept, in which primary production is not controlled directly by macronutrient concentrations. The lack of zonal gradient also suggests that carbon budget of the equatorial Pacific is primarily controlled by oscillations in the zonal and meridian extension of the HNLC area, rather than by values of planktonic biomasses and carbon fluxes within the upwelled water, which are quite constant.  相似文献   

6.
We conducted 1-year-long mooring observations four times below 2000?m, slightly south of the equator (2°39?? to 4°35??S) at 162°E in the Melanesian Basin in order to detect the southward deep western boundary return current crossing the equator. Contrary to our initial expectation of the deep flow scheme in the equatorial western boundary region, the observed results indicated a fairly complicated flow configuration. We analyzed the results with the help of a high-resolution model simulation. The ensemble average of the horizontal flow at each level near the deep western boundary indicates a significant westward flow at 2000 and 2250?m, with an insignificant southward component at 2500 and 2750?m. The annual mean meridional transports are very small (>1?Sv) and insignificant, with an ensemble-averaged value of 0.3?Sv (southward) ±0.4?Sv at most. Combining this with high-resolution model results, it is deduced that the southward transport of the deep western boundary current (DWBC) leaving the equator may be smaller than those obtained by low-resolution models, because of trapping of its fairly large fraction in the equatorial zone. Annual-scale flow patterns are classified into several categories, mainly based on the meridional-flow dominating or the zonal-flow dominating pattern. A case of the meridional-flow dominating patterns may possibly capture an annual-scale variability of DWBC, because its meridional transport variation, though somewhat weak, is consistent with that simulated. The zonal-flow dominating regime includes two types: long-lasting, almost steady westward flows and long-term zonal flow oscillations. The former seems to comprise well-known zonally elongated and meridionally narrow structures of the zonal flow beneath the thermocline in the equatorial region. The ensemble-averaged flow mentioned above is dominated by this type at the upper two levels 2000 and 2250?m, with total westward transport of 1.6?±?0.7?Sv. The latter type seems to be a manifestation of the vertically propagating equatorial annual Rossby waves.  相似文献   

7.
Altimeter and in situ data are used to estimate the mean surface zonal geostrophic current in the section along 115°E in the southern Indian Ocean,and the variation of strong currents in relation to the major fronts is studied.The results show that,in average,the flow in the core of Antarctic Circumpolar Current(ACC) along the section is composed of two parts,one corresponds to the jet of Subantarctic Front(SAF) and the other is the flow in the Polar Front Zone(PFZ),with a westward flow between them.The mean surface zonal geostrophic current corresponding to the SAF is up to 49 cm · s-1 at 46°S,which is the maximal velocity in the section.The eastward flow in the PFZ has a width of about 4.3 degrees in latitudes.The mean surface zonal geostrophic current corresponding to the Southern Antarctic Circumpolar Current Front(SACCF) is located at 59.7 °S with velocity less than 20 cm · s-1.The location of zonal geostrophic jet corresponding to the SAF is quite stable during the study period.In contrast,the eastward jets in the PFZ exhibit various patterns,i.e.,the primary Polar Front(PF1) shows its strong meridional shift and the secondary Polar Front(PF2) does not always coincide with jet.The surface zonal geostrophic current corresponding to SAF has the significant periods of annual,semi-annual and four-month.The geostrophic current of the PFZ also shows significant periods of semi-annual and four-month,but is out of phase with the periods of the SAF,which results in no notable semi-annual and fourmonth periods in the surface zonal geostrophic current in the core of the ACC.In terms of annual cycle,the mean surface zonal geostrophic current in the core of the ACC shows its maximal velocity in June.  相似文献   

8.
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29 years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Niño phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Niña phase. This meridional dipole accounted for more than 25 % of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993–2008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Niño (La Niña) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.  相似文献   

9.
A 12.7-year series of weekly absolute sea surface height (SSH) data in the region south of Africa is used for a statistical characterization of the location of the Agulhas Current retroflection and its variations at periods up to 2 years. The highest probability of presence of the retroflection point is at ~39.5°S/18–20°E. The longitudinal probability density is negatively skewed. A sharp eastward decrease at 22°E is related to detachments of the Agulhas Current from the continental slope at this longitude. The asymmetry in the central part of the distribution might reflect a westward increase of the zonal velocity of the retroflection point during its east–west pulsations. The western tail of the distribution reveals larger residence times of the retroflection at 14°E–15°E, possibly related to a slowing down of its westward motion by seamounts. While the averaged zonal velocity component of the retroflection point increases westward, its modulus exhibits an opposite trend, the result of southward velocity components more intense in the northeastern Agulhas Basin than farther west. These meridional motions likely reflect influences by cyclones adjacent to the Agulhas Current south of the Agulhas Bank, and farther west in the Cape Basin. In the latter area, variations of the meridional motions result in different positions of the westernmost retroflection patterns relative to the neighbouring seamounts, likely influencing the future behaviour of Agulhas rings shed at these locations. Agulhas ring formation at an average yearly rate of 5.8, similar to previous findings, was observed to occur west of ~19°E, in the western half of the retroflection probability domain. A well-defined seasonal signal of the retroflection longitude was found throughout the first 5 years of the time series, characterized by amplitudes of 1–1.3° of longitude, and western (eastern) extremes during austral summer (winter). This annual cycle was strongly phase shifted during and after the upstream retroflection event of 2000–2001.  相似文献   

10.
The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercurrents in cross-equatorial water mass transfer.  相似文献   

11.
We investigated variability in the ocean surface-subsurface layer north of New Guinea using Triangle Trans-Ocean Buoy Network (TRITON) buoys at 2°N, 138°E and 0°N, 138°E during the period from October 1999 to July 2004. Both North and South Pacific waters were observed below the subsurface at these stations. The variability in the subsurface waters was particularly high at 2°N, 138°E. Clear interannual variability occurred near the surface; the water type differed before and after onset of the 2002–03 El Niño. Before summer 2001, water that appeared to be advected from the central equatorial Pacific occupied the near surface layer. After autumn 2001, waters advected by the New Guinea Coastal Current were observed near the surface. Intraseasonal and seasonal variations were also observed below the subsurface. With regard to seasonal variability, the salinity of the subsurface saline water, the South Pacific Tropical Water, was generally high during the boreal summer-autumn, when the New Guinea Coastal Undercurrent was strong. Intraseasonal fluctuations on a scale of 20 to 60 days were also seen and may have been associated with intrinsic oceanic variability, such as ocean eddies, near the stations. Ocean variability in the thermocline layer between 100 and 200 m greatly affects the surface dynamic height variability; water variability before 2001 and variability in the pycnocline depth after 2002 are important factors affecting the thermocline.  相似文献   

12.
波浪诱导的水体输运会对海洋产生大尺度影响。结合波浪大尺度效应的研究现状和印度洋涌浪分布的事实,利用ECMWF-CERA20的波浪、海表面温度(SST)及风场数据,采用多种统计分析方法,研究了波浪输运与赤道印度洋SST的潜在关系。结果显示:中高纬度波浪输运异常的低频信号在空间、周期上与赤道SST异常均有高度相似性;Stokes漂流纬向、经向异常呈现出南—北、东—西的振荡,其第二模态时间序列与印度洋偶极子(Indian Ocean Dipole,IOD)指数存在强相关性并在La Ni a次年的负IOD事件中达到最高:相关系数在ACC区域纬向异常超前6个月时接近0.6,中纬度区域经向异常在超前3个月时达到0.7。在La Ni a次年的负IOD中,波浪经向输运异常的相位(超前三个月)与赤道SST异常相位呈全年反相位,经向浪致输运异常造成的东—西热量输运差异对赤道SST异常分布有不可忽略的贡献。  相似文献   

13.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

14.
Quasi-biennial variations in vertical profiles of ozone, temperature, air pressure, and zonal and meridional wind velocities are analyzed from ozonesonde data obtained at the western European stations of Lindenberg, Hohenpeissenberg, and Payerne. The effect of quasi-biennial variations manifests itself variously in different variables and is nonuniform in altitude. The period of quasi-biennial variations is not constant, and the values of the mean period group mainly around 2 and 2.5 years. As in the North American region, the effects of quasi-biennial variations in different parameters of the stratosphere and troposphere over western Europe are due to a combination of the effects of the quasi-biennial oscillation (QBO) in the equatorial stratosphere, the El Niño-Southern Oscillation (ENSO), and the North Atlantic Oscillation (NAO). The observed 2.5-year variations in stratospheric ozone are related to the equatorial QBO to a larger extent in comparison with variations in other variables. It seems likely that a determining influence on variations in stratospheric wind and temperature is exerted by the ENSO. Variations in tropospheric and stratospheric parameters with a mean period of about 2 years are due to the ENSO and NAO effects.  相似文献   

15.
The objective of the paper is to use the data collected along two meridional sections (45° E and 57°30′ E) during the austral summer (January–March) 2004 to understand the influence of seabed topography across the Madagascar and Southwest Indian Ridges on hydrographic parameters. The study was supplemented by World Ocean Circulation Experiment (WOCE) Conductivity-Temperature-Depth data collected during February–March 1996 along 30° E, as well as Levitus climatology. A southward shift of 2° latitude (between 45° E and 57°30′ E) was recorded for the two predominant frontal structures, i.e., the Agulhas Return Front and Southern Subtropical Front, which is attributed to the influence of seabed topography on hydrographic parameters. No significant spatial variation of these fronts was noted between the 30° E and 45° E meridional sections. Between latitudes 31° S and 42° S, the temperature and salinity structures show deepening over the ridges. The Antarctic Circumpolar Current core was detected between 40°15′ S and 43° S.  相似文献   

16.
The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.  相似文献   

17.
Spreading of warm water from the Kuroshio Extension into the Perturbed Area   总被引:1,自引:0,他引:1  
The path of the Kuroshio Extension describes two stationary meanders with crests at approximately 144°E and 150°E. The short-term meridional fluctuations of the warm water spreading northward from the first crest at the surface and its vertical structure were analyzed by using 5-day-mean surface temperature maps published by JAFIC, montly 100-m-depth temperature maps edited by the JMA, and CTD data obtained by the R.Vs.Kofu-Maru, Hakuho-Maru andTansei-Maru cruises from 1990 to 1994. A Northern Boundary of the Spreak Kuroshio Water (NBSKW) and a Southern Boundary of the Spread Kuroshio Water (SBSKW) at the surface were defined as the northern and southern boundary of the pronounced meriodional temperature gradients, respectively. The vertical structure of the Spread Kuroshio Water was analyzed in terms of its T-S properties. The location of the NBSKW at the surface corresponds well with the northern boundary of the subsurface high salinity water that represents the Spread Kuroshio Water. The short-term meridional fluctuations of the northern and southern boundary of the Spread Kuroshio Water at the surface were studied through the spectral analysis of the maximum latitude of the two lines defined. We obtained the following results: (1) the meridional fluctuations of the NBSKW and SBSKW at the first creast have major periods between 16 and 38 days; (2) the 50 day running mean of the SBSKW at the first crest, for the purpòse of this study, can be generally used as indicative of the location of the Kuroshio axis; and (3) the northward extent of the Spread Kuroshio Water and the velocity of the meridional shift suggest seasonal variability that could be related with their vertical structure.  相似文献   

18.
热带东印度洋-西太平洋海域OLR季节内振荡空间分布特征   总被引:5,自引:0,他引:5  
利用卫星观测的OLR(Outgoing Longwave  Radiation)候平均资料(1979-1993年)分析热带东印度洋-西太平洋海域大气对流季节内振荡的空间分布特征。发现热带东印度洋-西太平洋海域(35°N-35°S,75°E-180°E)大气对流运动的季节内振荡在4个区域中表现较明显:(1)热带东印度洋大气对流季节内振荡信号最强,显著的振荡周期集中在6.5-12.5候;(2)澳大利亚西北洋面季节内振荡强信号主要周期表现为9.5-15.5候;(3)澳大利亚东北洋面振荡周期集中在6.5-9.5候和9.5-15.5候,南半球的大气对流活动季节内振荡显著区沿10°S呈纬向带状分布;(4)南海北部、吕宋海峡附近及日本群岛以南的西北太平洋区域。ISO振荡周期集中在6.5-12.5候,南海南部季节内振荡周期集中在6.5-15.5候。  相似文献   

19.
The problem of simulating quasi-biennial oscillations (QBOs) of zonal velocity in the equatorial stratosphere in atmospheric general circulation models is considered. In accordance with the results from Part I of this study on the basis of the models developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), the possibility of implementing (in these models) mechanisms of QBO excitation through both the interaction of planetary waves with the mean flow and breaking of short gravity waves is investigated. A new high-resolution 2° × 2.5° × 80 version of the INM RAS model is designed, a climate simulation with the two 2° × 2.5° × 39 and 2° × 2.5° × 80 versions of the INM RAS model is briefly described, results of spectral analysis of equatorial wave activity are presented, and the QBO formation processes in these models are considered in detail. For the new 2° × 2.5° × 80 model, realistic QBOs of zonal wind are obtained as the result of the action of both mechanisms.  相似文献   

20.
The Pacific interior subtropical?tropical cells (STCs) and their relation to the two types of El Niño-Southern Oscillation (ENSO) are investigated by using GODAS reanalysis ocean data for the period of 1980–2017. The results show that the interior STC transport into the equatorial region across 9°S and 9°N has a close relationship with the eastern Pacific (EP) ENSO, while it is much weaker with the central Pacific (CP) ENSO. It is suggested that the effect of interior STCs on the tropical Pacific climate is reflected in its relation with the western Pacific thermocline depth or SSHA. During the EP El Niño, the anomalous interior STCs at 9°S and 9°N converge to the equatorial region from the lag months of ? 25 to ? 8, leading to an accumulation of heat content in the equatorial Pacific; from the lag months of ? 8 to 10, they diverge poleward, inducing a discharge of equatorial heat content. The peak poleward interior STC anomaly first appears at 9°N at a zero-lag time, while that at 9°S is observed 4–5 months later. But there is also no appearance of a time lag between the interior STCs at 9°N and 9°S in recharging the period during the EP La Niña mature phase. However, during CP El Niño, only the conspicuous anomalous interior STC divergence appears during the mature and decay phases for the lag months of ? 2 to 10, with being symmetric at 9°N and 9°S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号