首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

2.
3.
4.
The Pakuashan anticline is uniquely suited for study of the forward and lateral growth of fault-related folds. The Pakuashan ridge development arises from the late Quaternary uplift of the most external thrust zone of the western foothills of Taiwan. From Kaoshiung to Taichung, recent and active westward thrusting occurs at the front of the foothills. The Pakuashan anticline, trending N 150°E in the northern part to N 000° in the southern part, has been active throughout the Quaternary period. This activity is marked by geological structures, tectonic geomorphology and seismicity. A multisource and multiscale approach to study of the continental collision setting has been undertaken to combine tectonics, sedimentology and geomorphology. Studies of fracture patterns allow identification of two main features of stress orientations: a WNW/ESE compression direction, and E–W and N–S extension directions. Quantitative geomorphic parameters have been used to define the morphotectonic evolution and to infer tectonic style along the mountain front. Geomorphic evidence provides significant information on the processes that govern lateral propagation of an active anticline. Quaternary terraces are uplifted, tilted and folded over the Pakuashan ridge. Drainage systems in areas of active compression give information on the thrust zone structures and their development. Steep drainage and high local relief indicate that the Pakuashan anticline forms a well-defined zone of high uplift, especially in the southern part. The two main controls on drainage in that area are rock strength in the hanging wall and propagation of the deformation towards the south.  相似文献   

5.
对喇家遗址进行了全面的野外考察,在其北部发现完整连续的全新世黄土-古土壤地层剖面。通过系统采样、粒度和磁化率等多种指标测试,结合OSL技术测年断代,建立了完整的土壤地层序列。深入分析土壤沉积物性质与地表过程,揭示了覆盖齐家文化废墟的沉积物的成因。研究结果表明:喇家遗址土壤沉积物地层层序自地表向下依次为:现代土壤(MS,0~1.50 ka B.P.)→全新世晚期风成黄土(L0,1.50~3.10 ka B.P.)→全新世中期古土壤(S0,3.10~8.50 ka B.P.)→全新世早期过渡性风成黄土(Lt,8.50~11.50 ka B.P.)→晚更新世晚期马兰黄土(L1,>11.50 ka B.P.)。其中全新世中期黑垆土古土壤(S0)被3组红色粘土质泥流(RC3、RC2和RC1)和山洪沙土(FFD)沉积层穿插分隔为4个亚层(S0上、S0中上、S0中下和S0下)。这证明黑垆土发育过程中,在OSL年龄3.96~3.65ka,对应于14C年龄3.85~3.60 ka B.P.出现一个山洪泥流盛行期,来自于盆地北侧沟谷的大规模暴雨山洪泥流,在大红山前古洪积扇前沿溢出沟槽、扩散覆盖了黄河...  相似文献   

6.
Extensional fault‐propagation folds are now recognised as being an important part of basin structure and development. They have a very distinctive expression, often presenting an upward‐widening monocline, which is subsequently breached by an underlying, propagating fault. Growth strata, if present, are thought to provide a crucial insight into the manner in which such structures grow in space and time. However, interpreting their stratigraphic signal is neither straightforward nor unique. Both analogue and numerical models can provide some insight into fold growth. In particular, the trishear kinematic model has been widely adopted to explain many aspects of the evolution and geometry of such fault‐propagation folds. However, in some cases the materials/rheologies used to represent the cover do not reproduce the key geometric/stratigraphic features of such folds seen in nature. This appears to arise from such studies not addressing adequately the very heterogenous mechanical stratigraphy seen in many sedimentary covers. In particular, flexural slip between beds/layers is often not explicitly modelled but, paradoxically, it appears to be an important deformation mechanism operative in such settings. Here, I present a 2D discrete element model of extensional fault‐propagation folding which explicitly includes flexural slip between predefined sedimentary units or layers in the cover. The model also includes growth strata and shows how they may reflect the various evolutionary stages of fold and fault growth. When flexural slip is included in the modelling scheme, the resultant breached monoclines and their growth strata are strikingly similar to some of those seen in nature. Results are also compared with those obtained using simple, homogeneous, frictional‐cohesive and elastic cover materials. Both un‐lithified and lithified growth strata are considered and clearly show that, rather than just being passive recorders of structural evolution, growth strata can themselves have an important effect on fault‐related fold growth. Implications for the evolution of and strain within, the resultant growth structures are discussed. A final focus of this study is the relationship that trishear might have with the upward‐widening zone of flexural slip activation away from a fault tip singularity.  相似文献   

7.
The Betic Cordillera (Southern Spain) acquired its present configuration during the Neogene. The formation, evolution and total or partial destruction of Neogene sedimentary basins were highly controlled by the geodynamic situations and the positions of the basins in the Betic Cordillera. It is impossible to reconstruct the geometry of basins formed during the Early and Middle Miocene, concurrently with the westward drift of the Internal Zones, because in many cases only small outcrops remain. The basins formed on the mobile substratum (the Internal Zones) are characterized by a sedimentary infill made up of synorogenic deposits, which were intensely deformed towards the end of the Middle Miocene, and which were heavily eroded before the beginning of the Late Miocene. In the External Zones, deposition mainly took place in the North Betic Strait, an area across which there was wide communication between the Atlantic and the Mediterranean, which received huge olistostromic masses in its more mobile sector (the foredeep basin), and which evolved differently in its eastern and western sectors. The palaeogeography of the Cordillera changed radically at the beginning of the Late Miocene, when the westward drift of the Internal Zones ceased. During this time the North Betic Strait disappeared and, in what had been its northwestern half approximately, the Guadalquivir Basin became individualized. This basin, which was located between the Betic Chain and the emerged Hercynian Massif, acquired a structure similar to that of the present basin and its extension was also similar to that of the present Neogene outcrops. Intramontane basins became individualized in the recently formed and progressively emerged mountain chain, reaching a development and size in this Cordillera much greater than in other Alpine chains. These basins are characterized by their thick infills, which are unconformable on the folded and deformed substratum, and which can be subdivided according to the different movements of the fault sets that controlled their evolution.  相似文献   

8.
The Permian Ecca Group of the Karoo Basin, South Africa preserves an extensive well-exposed siliciclastic basin floor, slope and shelf-edge delta succession. The Kookfontein Formation includes multiple sedimentary cycles that display clinoform geometries and are interpreted to represent the deposits of a slope to shelf succession. The succession exhibits progradational followed by aggradational stacking of deltaic cycles that is related to a change in shelf-edge trajectory, and lies within two depositional sequences. Sediment was transferred to the slope via overextension of deltas onto and over the shelf edge, resulting in failure and re-adjustment of local slope gradients. The depositional facies and architecture of the Kookfontein Formation record the change from a bypass- to accretion-dominated margin, which is interpreted to reflect a decrease in sediment transport efficiency as the slope gradient decreased, slope length increased and shelf-edge trajectory rose. During this time the delivery system changed from point-sourced basin-floor fans fed by slope channels to starved basin-floor with sand-rich slope clinoforms. This is an example of a progradational margin in which the younger slope system is interpreted to be of a different style to the older slope system that fed the underlying sand-rich basin floor fans.  相似文献   

9.
The object of this study is to build a three-dimensional (3D) geometric model of the stratigraphicunits of the margin of the Rhone River on the basis of geophysical investigations by a networkof seismic profiles at sea. The geometry of these units is described by depth charts of eachsurface identified by seismic profiling, which is done by geostatistics. The modeling starts bya statistical analysis by which we determine the parameters that enable us to calculate thevariograms of the identified surfaces. After having determined the statistical parameters, wecalculate the variograms of the variable Depth. By analyzing the behavior of the variogramwe then can deduce whether the situation is stationary and if the variable has an anisotropicbehavior. We tried the following two nonstationary methods to obtain our estimates: (a) Themethod of universal kriging if the underlying variogram was directly accessible. (b) Themethod of increments if the underlying variogram was not directly accessible. After havingmodeled the variograms of the increments and of the variable itself, we calculated the surfacesby kriging the variable Depth on a small-mesh estimation grid. The two methods then arecompared and their respective advantages and disadvantages are discussed, as well as theirfields of application. These methods are capable of being used widely in earthsciences forautomatic mapping of geometric surfaces or for variables such as a piezometricsurface or aconcentration, which are not stationary, that is, essentially, possess a gradient or a tendencyto develop systematically in space.  相似文献   

10.
新疆普鲁地层剖面碳酸钙和可溶盐分析结果的讨论   总被引:2,自引:2,他引:2  
以塔里木盆地南缘风成砂质山地(简称砂山)的普鲁地层剖面中碳酸钙及可溶盐分析结果为依据,讨论了砂山沉积过程中的环境变迁。  相似文献   

11.
Uncertainty remains if ice–free marginal areas existed on the west coast of Svalbard during the Late Weichselian. Field mapping and correlation to well dated raised beach sequences on nearby Brøggerhalvøya reveal the existence of two generations of raised beach deposits on northern Prins Karls Forland. Distinct beach ridges rise up to the inferred Late Weichselian marine limit at 18 m a.s.l. Discontinuous pre–Late Weichselian beach deposits rise from the Late Weichselian marine limit up to approximately 60 m a.s.l. Expansion of local glaciers during the Late Weichselian is indicated by the limited distribution of a till that overlies parts of the older beach sequence. Stratigraphic data and chronological control indicate deposition in a shallow marine environment before 50 ka bp . Correlation to stratigraphic sites on western Svalbard suggests deposition at c . 70 ±10 ka. Glaciotectonic structures disclose expansion of local glaciers into the For–landsundet basin during stage 4 or late stage 5 high relative sea level. Palaeotemperature estimates derived from amino acid ratios indicate that during the time interval c . 70 to 10 ka the area was exposed to cold subaerial temperatures with low rates of racemization. Pedogenesis and frost–shattered clasts at the contact between c . 70 ka deposits and Holocene deposits further indicate a prolonged period of subaerial polar desert conditions during this time interval. The evidence suggests that the Barents Sea ice sheet did not extend across northern Prins Karls Forland during the Weichselian. It is inferred that during the Late Weichselian, ice was drained throughout the major fjords on the west coast of Svalbard and that relatively large marginal areas experienced polar desert conditions and minor expansions of local glaciers.  相似文献   

12.
朱诚  黄铿 《地理学报》2009,64(9):1143-1147
随着国内外地层学界对新生代地层研究的不断深入,自1996年以来,国际地层学界对新生代地层学年代的划分不断更新。国际地层委员会2008年公布的方案中,新生代内第四纪的地位还未确定,它可能包括更新世,底界回溯到大约2.6 MaBP。随着中国第四纪研究在国际上的学术地位日益上升,在对新生代的划分上,表达中国学者建议的呼声将会越来越高。  相似文献   

13.
14.
The concentration of dissolved iron (DFe) and suspended leachable particulate iron (LPFe) in the water column of the western Beaufort Sea were investigated during the late summer of 2010. Elevated concentrations of surface DFe (0.49–1.42 nM) were similar to those reported in resent studies, likely reflecting input from melting sea ice and river discharge. The rapid decrease in DFe (5.20–0.48 nM) and LPFe (88.2–1.83 nM) values observed from inshore to offshore in Pacific influenced waters, suggest scavenging processes limit the input of DFe from the shelf to the deep basin. However, frequent eddies found in this region are likely important in promoting lateral advection, as suggested by higher surface DFe concentrations at an offshore station in the vicinity of a warm-core eddy. Within the Atlantic layer, relatively homogeneous DFe (0.69–0.80 nM) and LPFe (1.18–2.13 nM) concentrations were observed at all the stations, reflecting a balance in the interplay between input and removal processes within this watermass. An input of DFe east of the Lomonosov Ridge was inferred by comparing DFe values within the core of Atlantic water between the Eastern and Western Arctic.  相似文献   

15.
16.
17.
18.
19.
20.
A theoretical approach to the propagation of interacting cracks   总被引:2,自引:0,他引:2  
We propose a scheme to compute interaction effects between two randomly oriented cracks under compressive stresses and we discuss the role crack interactions play in the crack coalescence process. Stress intensity factors are computed by using an iterative technique based on the method of successive approximations. Once crack propagation occurs, curved wing cracks grow from the initial crack tips. The stress intensity factors at the wing crack tips are calculated as the sum of two terms: a component for a single wing crack subjected to both the applied stresses and the interaction effect, and a component due to the sliding of the initial crack. We have applied our procedure to various crack geometries. Our results show that interaction effects act on the crack propagation path. For cracks under tension, our approach correctly predicts the curving, hook-shaped paths of interacting cracks that have been observed in various materials. For en echelon compressive cracks, interaction effects depend on the geometry of stepping. For right-stepping cracks, no mode I crack coalescence occurs. A mixedmode propagation criterion may be introduced to check whether coalescing secondary shear fractures initiate. For left-stepping cracks, depending on whether or not there is overlapping, crack coalescence is achieved by tension wing cracks at the inner crack tips. Without overlapping, the growing wing cracks delimit a region where a tensile secondary fracture may develop and lead to coalescence. These results are consistent with previous work and show that our procedure may be now extended to a population of cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号