首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Afield site was established in an area of glacial outwash near Des Moines, Iowa. Hydraulic conductivity (K) of the outwash was measured in various ways including six pumping tests and two natural-gradient Cl- tracer tests. The velocity of the conservative tracer was converted to K using measured gradients and effective porosity determined from two radial-convergent Cl- tracer tests.
K values measured from the conservative tracer tests are approximately one-tenth to one-twentieth the average pumping-test value. Thus the K relevant to solute transport does not reflect the K measured by pumping tests. This discrepancy may be caused by the different scale and dimensionality of the two test types. Dispersion may prevent solutes from flowing exclusively within smaller high-conductivity paths which strongly affect the K measured by pumping tests.  相似文献   

7.
8.
9.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

10.
11.
12.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

13.
14.
In confined aquifers the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This article presents simple methods to evaluate the transmissivity tensor and storativity of an anisotropic confined aquifer when there is an interfering well in the neighborhood of the tested well. Two methods have been developed depending on whether the tested well or the interfering well is the first in operation. These new methods yield better estimates of the hydraulic parameters than when the influence of the interfering well is neglected. These methods have then been used on data obtained from numerical models with an interfering well and the results have been compared to an analytical method that neglects the influence of the interfering well. The methods require knowledge of the pumping rate of the interfering well and the time elapsed since the pumping started in each well. If the interfering well started pumping before the tested well, the method does not require knowledge of the aquifer piezometric level at the beginning of the test, which is often unknown in this case. As for the method without interference, at least three monitoring wells (MWs) are needed, the position of which influences the accuracy of the estimated parameters. Some recommendations concerning MWs position have been given to get more accurate results according to the sought parameter.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号