共查询到20条相似文献,搜索用时 0 毫秒
1.
Wave propagation simulation in a linear viscoelastic medium 总被引:7,自引:0,他引:7
2.
3.
A modified Lax-Wendroff correction for wave propagation in attenuating and dispersive media described by Zener elements is presented. As opposed to the full correction, this new technique is explicit and offers large computational savings. The technique may be applied to a wide variety of hyperbolic problems. Here, the concept is illustrated for wave propagation in visco-acoustic media. 相似文献
4.
5.
6.
The energy–flux vector and other energy-related quantities play an important role in various wave propagation problems. In acoustics and seismology, the main attention has been devoted to the time-averaged energy flux of time-harmonic wavefields propagating in non-dissipative, isotropic and anisotropic media. In this paper, we investigate the energy–flux vector and other energy-related quantities of wavefields propagating in inhomogeneous anisotropic viscoelastic media. These quantities satisfy energy-balance equations, which have, as we show, formally different forms for real-valued wavefields with arbitrary time dependence and for time-harmonic wavefields. In case of time-harmonic wavefields, we study both time-averaged and time-dependent constituents of the energy-related quantities. We show that the energy-balance equations for time-harmonic wavefields can be obtained in two different ways. First, using real-valued wavefields satisfying the real-valued equation of motion and stress–strain relation. Second, using complex-valued wavefields satisfying the complex-valued equation of motion and stress–strain relation. The former approach yields simple results only for particularly simple viscoelastic models, such as the Kelvin–Voigt model. The latter approach is considerably more general and can be applied to viscoelastic models of unrestricted anisotropy and viscoelasticity. Both approaches, when applied to the Kelvin–Voigt viscoelastic model, yield the same expressions for the time-averaged and time-dependent constituents of all energy-related quantities and the same energy-balance equations. This indicates that the approach based on complex-valued representation of the wavefield may be used for time harmonic waves quite universally. This study also shows importance of joint consideration of time-averaged and time-dependent constituents of the energy-related quantities in some applications. 相似文献
7.
Seismic wave propagation in cracked porous media 总被引:6,自引:0,他引:6
8.
Electromagnetic fields in planarly layered anisotropic media 总被引:8,自引:0,他引:8
9.
10.
We study properties of the energy-flux vector and other related energy quantities of homogeneous and inhomogeneous time-harmonic P and S plane waves, propagating in unbounded viscoelastic anisotropic media, both analytically and numerically. We propose an algorithm for the computation of the energy-flux vector, which can be used for media of unrestricted anisotropy and viscoelasticity, and for arbitrary homogeneous or inhomogeneous plane waves. Basic part of the algorithm is determination of the slowness vector of a homogeneous or inhomogeneous wave, which satisfies certain constraints following from the equation of motion. Approaches for determination of a slowness vector commonly used in viscoelastic isotropic media are usually difficult to use in viscoelastic anisotropic media. Sometimes they may even lead to non-physical solutions. To avoid these problems, we use the so-called mixed specification of the slowness vector, which requires, in a general case, solution of a complex-valued algebraic equation of the sixth degree. For simpler cases, as for SH waves propagating in symmetry planes, the algorithm yields simple analytic solutions. Once the slowness vector is known, determination of energy flux and of other energy quantities is easy. We present numerical examples illustrating the behaviour of the energy-flux vector and other energy quantities, for homogeneous and inhomogeneous plane P , SV and SH waves. 相似文献
11.
12.
13.
Rayleigh waves in isotropic viscoelastic media 总被引:1,自引:0,他引:1
José M. Carcione 《Geophysical Journal International》1992,108(2):453-464
14.
Radiation from point sources in general anisotropic media 总被引:2,自引:0,他引:2
Dirk Gajewski 《Geophysical Journal International》1993,113(2):299-317
15.
16.
Joseph Ha 《Geophysical Journal International》1986,86(2):635-650
Summary. A set of stable algorithms for computing synthetic seismograms in attenuating transversely isotropic media is presented. The structures of these algorithms for anisotropic media are formally equivalent to their counterparts for isotropic media. The seismic responses of a periodically layered isotropic medium are compared with those of its long-wave equivalent transversely isotropic medium. The synthetics for the two media show observable differences in the range of frequencies considered. The differences are small in the P -waves, but partly large in later arrivals. 相似文献
17.
Wave propagation simulation in a linear viscoacoustic medium 总被引:2,自引:0,他引:2
18.
19.
Matthias Zillmer Boris Kashtan & Dirk Gajewski 《Geophysical Journal International》1998,132(3):643-653
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails. 相似文献
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails. 相似文献