首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

2.
一次层状云系水分收支和降水机制的数值研究   总被引:7,自引:0,他引:7  
周非非  洪延超  赵震 《气象学报》2010,68(2):182-194
对2002年10月18—20日河南省层状云系的水分收支和降水机制用MM5模式模拟的结果表明,河南省域以外的水物质主要通过西和南边界输送到区域内,19日降水主要时段总水物质通量在水平方向上为净流入。对河南省域水汽、水凝物和总水物质的水分平衡等式中各项的估算表明该区域水物质基本达到收支平衡。估算的河南省域总水物质降水效率、凝结率、凝华率和水凝物降水效率及水汽降水效率分别约33.1%、27.7%、13.1%、69.7%和31.1%,总水物质降水效率与水汽降水效率接近是由于参与的水物质总量中水汽占绝大部分。约58.2%以上的冰晶转化为雪,超过82.1%的雪融化,不到11.1%的雪转化为霰,霰粒子几乎完全融化。冰晶通过凝华过程增长。雪主要由冰晶转化产生,凝华增长率比撞冻增长率高得多。雨水由暖云和冷云过程产生和增长,雨水碰并云水量和冰粒子融化量对雨水的贡献相近,云雨自动转化量小。可见,在主要降水时段,降水是由冷云和暖云过程共同产生的。冰粒子凝华增长对雨水的贡献最大超过35%,撞冻增长的贡献最高不足12%,可见水汽对降水粒子增长重要。催化层、冰水混合层和液水层对降水的贡献分别约为15%—27%、45%—50%和23%—38%,表明此"催化-供给"云中冰粒子在冰水混合层的增长对降水的贡献相当大。  相似文献   

3.
Theoretical and Applied Climatology - In this study, we use the moisture budget equation and the three-pattern decomposition of global atmospheric circulation to analyze the extreme precipitation...  相似文献   

4.
5.
Atmospheric moisture budget and its regulation of the summer (June–July–August) precipitation over the Southeastern United State (SE U.S.) were examined during 1948–2007 using PRECipitation REConstruction over Land and multiple reanalysis datasets. The analysis shows that the interannual variation of SE U.S. summer precipitation can be largely explained by the leading Empirical Orthogonal Function mode showing a spatially homogenous sub-continental scale pattern. Consequently, areal-averaged precipitation was investigated to focus on the large-scale rainfall changes over the SE U.S. The wavelet analysis identifies an increased 2–4 year power spectrum in recent 30 years (1978–2007), suggesting an intensification of the interannual variability. Analysis of the atmospheric moisture budget indicates that the increase in precipitation variability is mainly caused by moisture transport, which exhibits a similar increase in the 2–4 year power spectrum for the same period. Moisture transport, in turn, is largely controlled by the seasonal mean component rather than the subseasonal-scale eddies. Furthermore, our results indicate that dynamic processes (atmospheric circulation) are more important than thermodynamic processes (specific humidity) in regulating the interannual variation of moisture transport. Specifically, the North Atlantic Subtropical High western ridge position is found to be a primary regulator, with the ridge in the northwest (southwest) corresponding to anomalous moisture divergence (convergence) over the SE U.S. Changes in moisture transport consistent with the increased frequency of these two ridge types in recent 30 years favor the intensification of summer precipitation variability.  相似文献   

6.
7.
8.
The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulat ing global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-sl, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s 1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negatiw,' pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Nina years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Nifia years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical as cent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMR especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.  相似文献   

9.
In this paper, we explored the trends of the atmospheric moisture budget, precipitation, and streamflow in summer during 1961 to 2005 and possible correlations between them by using the linear regression method in the Yangtze River basin, China. The results indicate that: (1) increasing tendencies can be detected in the atmospheric moisture budget, precipitation and streamflow in the Yangtze River basin; however, the significant increasing trends occur only in the atmospheric moisture budget and precipitation in the middle and lower Yangtze River basin; (2) both the ratio of summer moisture budget to annual moisture budget and the ratio of summer precipitation to annual precipitation exhibit a significant increasing trend in the Yangtze River basin. The ratio of summer streamflow to annual streamflow is in a significant increasing trend in Hankou station. Significant increasing summer precipitation can be taken as the major controlling factor responsible for the higher probability of flood hazard occurrences in the Yangtze River basin. The consecutively increasing summer precipitation is largely due to the consistently increasing moisture budget; (3) the zonal geopotential height anomaly between 1991 and 2005 and 1961 and 1990 is higher from the south to the north, which to a large degree, limits the northward propagation of the summer monsoon to north China. As a result, the summer moisture budget increases in the middle and lower Yangtze River basin, which leads to more summer precipitation. This paper sheds light on the changing properties of precipitation and streamflow and possible underlying causes, which will be greatly helpful for better understanding of the changes of precipitation and streamflow in the Yangtze River basin.  相似文献   

10.
The annual cycle of solar radiation, together with the resulting land–ocean differential heating, is traditionally considered the dominant forcing controlling the northward progression of the Indian monsoon. This study makes use of a state-of-the-art atmospheric general circulation model in a realistic configuration to conduct “perpetual” experiments aimed at providing new insights into the role of land–atmosphere processes in modulating the annual cycle of precipitation over India. The simulations are carried out at three important stages of the monsoon cycle: March, May, and July. Insolation and SSTs are held fixed at their respective monthly mean values, thus eliminating any external seasonal forcing. In the perpetual May experiment both precipitation and circulation are able to considerably evolve only by regional internal land–atmosphere processes and the mediation of soil hydrology. A large-scale equilibrium state is reached after approximately 270 days, closely resembling mid-summer climatological conditions. As a result, despite the absence of external forcing, intense and widespread rains over India are able to develop in the May-like state. The interaction between soil moisture and circulation, modulated by surface heating over the northwestern semi-arid areas, determines a slow northwestward migration of the monsoon, a crucial feature for the existence of desert regions to the west. This also implies that the land–atmosphere system in May is far from being in equilibrium with the external forcing. The inland migration of the precipitation front comprises a succession of large-scale 35–50 day coupled oscillations between soil moisture, precipitation, and circulation. The oscillatory regime is self-sustained and entirely due to the internal dynamics of the system. In contrast to the May case, minor changes in the land–atmosphere system are found when the model is initialized in March and, more surprisingly, in July, the latter case further emphasizing the role of northwestern surface heating.  相似文献   

11.
A global monthly climatology of soil moisture and water balance   总被引:4,自引:0,他引:4  
Global monthly climatology of available soil moisture content is derived on a 4° by 5° grid from observed precipitation and air surface temperature by use of a simple water budget model. The governing equations and methods of calculation for deriving these fields, which follow the formulation of Thornthwaite, are first described and the importance of the various assumptions and simplifications of this approach are discussed. The derived global fields are then presented. A comparison of some of the derived fields with other calculations is also made in order to permit an evaluation of the results: For example, our indirect estimate of the river run-off is generally in good agreement with more direct estimates, except for high latitude regions where the freezing of the soil may play an important role.Yale Mintz died on 27 April 1991. This work was carried out jointly over a number of years preceding his death  相似文献   

12.
13.
Presented are the computations of condensation and precipitation of atmospheric moisture at night depending on the diurnal variations of air temperature and air humidity. Used are the meteorological data for northern Dagestan. Determined is the contribution of the dew to the moistening of the soil. The examples of the exponential and lognormal distribution of droplets revealed that the use of the velocity of medium-size droplet underestimates the value of the moisture mass precipitated on the soil. A concept of the mean mass precipitation velocity is introduced, and the formulae are provided for determining the average mass of deposited condensate depending on humidity, the temperature drop, and size distribution of droplets. Posed is a new problem of diurnal condensate precipitation in the soil in summer and of technology of its increase.  相似文献   

14.
The global distribution of area-averaged precipitation is extremely difficult to determine with precision. In this paper we will explain why satellite measurements are necessary for the production of global analyses of precipitation, summarize some of the various methods which have been used to estimate rainfall from satellite observations over the past two decades, and describe an attempt to use a mix of remotely sensed estimates and surface observations of rainfall to produce analyses of the large-scale rainfall for the globe. We will discuss the relationship between two types of satellite-derived precipitation estimates over the oceans from 40°N to 40°S, and then will conclude with a discussion of some possible physical mechanisms which might be responsible for the observed correlation between area-averaged rainfall and cloudiness.  相似文献   

15.
利用传统气候学的Brubaker二元模型和降水同位素平衡模型定量研究了新疆天山地区水汽再循环特征。结果表明:(1)气候学角度,天山地区水汽再循环率为9.32%。当地蒸发的水汽形成的降水量为41.8 mm,外来水汽输送到山区形成的降水量为407.2 mm;(2)同位素水汽氘盈余为精细化的分析水汽再循环提供了新的思路,进一步证实天山地区水汽主要来自于西风带的水汽输送,而乌鲁木齐站平均再循环水汽仅占到8%。随着海拔的增加,水汽再循环率逐渐下降,在海拔2000 m以上的水汽再循环可以忽略不计。在西风带关键水汽输送路径建立降水同位素观测断面,使两种方法相结合,共同研究水汽的来源和路径问题,是下一步需要关注的问题。  相似文献   

16.
Theoretical and Applied Climatology - Indian summer monsoon rainfall (ISMR) variability of ± 10% of its long-term mean leads to flood and drought, affecting the life and economic...  相似文献   

17.
18.
Summary A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.  相似文献   

19.
气候变暖背景下降水持续性与相态变化的研究综述   总被引:1,自引:0,他引:1  
翟盘茂  廖圳  陈阳  余荣  袁宇锋  陆虹 《气象学报》2017,75(4):527-538
持续性降水和固态降水(或近地面气温为0℃左右的降水)都能导致洪涝和低温雨雪冰冻等灾害性的极端事件,对人民群众生命和财产安全以及社会经济发展也会造成严重危害。目前中外围绕降水量、极端降水事件变化等已开展了大量研究,但在降水持续性和相态变化的特征及其影响机理方面的研究仍显不足。因此,围绕降水持续性和相态变化的相关研究,对近20余年来取得的一些重要研究进展进行回顾。研究指出,在气候变暖背景下降水持续性和相态变化的特征在全球范围内表现出了区域上的不一致性。有关降水持续性变化方面,中国南方地区持续性降水过程及其产生的降水量呈现增多趋势,但北方地区呈现减少的趋势,而西南地区长持续性降水呈下降趋势。至于降水相态变化方面,中国南方地区持续性雨雪冰冻事件在气候变暖背景下总体呈减少趋势。这些变化除了与气候变暖有关外,可能还与大气遥相关模态、低频振荡及ENSO事件等引起的大气环流异常有关。今后应该更多开展气候变暖背景下降水持续性和相态变化的特征、可能机理以及其与气候变暖的可能联系方面的研究,以期通过相关研究深入理解中国降水持续性与相态变化的规律、成因及其与旱涝、低温雨雪灾害等的联系,进一步加深对气候变暖背景下中国天气、气候的影响及其机理的认识。   相似文献   

20.
The initial tendency approach is used to diagnose systematic errors in global GRAPES (Global/Regional Assimilation Prediction System), including overly strong westerlies in the northern midlatitudes, cold/warm bias dipoles in the vicinity of the tropopause, and excessively strong southerlies in downstream regions of the Tibetan Plateau. This approach, involving the use of the assimilation system, focuses on the first few time steps of numerical weather forecasts to identify the deficiencies in diabatic forcing. The results show that there is insufficient diabatic dissipation in the upper troposphere and lower stratosphere of the northern midlatitudes and the lower troposphere of most latitudes, which results from the absence of a parameterization of subgrid orographic drag in global GRAPES. A scheme to parameterize the effects of these drags is therefore tested and the experiments indicate that the newly introduced scheme reduces zonal momentum budget residuals, weakens the northern midlatitude westerlies and southerlies in the downstream regions of the Tibetan Plateau, decreases the cold/warm bias dipoles, and leads to improved objective verification scores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号