首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

2.
Summary. The unified seismic exploration program, consisting of 345 km of deep reflection profiling, a 200 km refraction profile, an expanding spread profile and near-surface high resolution reflection meaasurements, revealed a strongly differentiated crust beneath the Black Forest. The highly reflective lower crust contains numerous horizontal and dipping reflectors at depths of 13-14 km down to the crust-mantle boundary (Moho). The Moho appears as a flat horizontal first order discontinuity at a relatively shallow level of 25–27 km above a transparent upper mantle. From modelling of synthetic near-vertical and wide-angle seismograms using the reflectivity method the lower crust is supposed to be composed of laminae with an average thickness of about 100 m and velocity differences of greater than 10% increasing from top to bottom. The upper crust is characterised by mostly dipping reflectors, associated with bivergent underthrusting and accretion tectonics of Variscan age and with extensional faults of Mesozoic age. A bright spot at 9.5 km depth is characterised by low velocity material suggesting a fluid trap. It appears on all of the three profiles in the centre of the intersection region. The upper crust seems to be decoupled from the lowest crust by a relatively transparent zone which is' also identified as a low-velocity zone. This low velocity channel is situated directly above the laminated lower crust. The laminae in the Rhinegraben area are displaced vertically to greater depths indicating an origin before Tertiary rift formation and a subsidence of the whole graben wedge.  相似文献   

3.
Summary. Fold belts form due to shortening of deep basins on oceaic and continental crust. Basins on the oceanic crust should be characterized by a pronounced seismic anisotropy in the mantle lithosphere. Deep basins on the continental crust may develop from the stretching or the destruction of the lower crust under asthenospheric upwelling. These processes can produce seismic anisotropy in both the crust and mantle lithosphere. The character of the anisotropy is different for different basin forming processes. Considerable anisotropy should also arise from compression of the crust and mantle in fold belts. The formation of fold belts produces the original seismic anisotropy in continental lithosphere.  相似文献   

4.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

5.
Deep seismic reflection studies in Israel - an update   总被引:1,自引:0,他引:1  
Summary. The results of three deep crustal reflection lines are presently available from Israel. A 90 km line from near the Dead Sea rift to the Mediterranean coast was carried out for deep study. Two other lines in the Mediterranean coastal area were derived by recorrelation of oil exploration lines. The data shows a division between continental inner Israel and the coastal plain. In the first area a reflective lower crust is apparent with transparent upper crust and almost transparent upper mantle. Near the coast, in an area which was previously suggested as underlain by an ancient fossil oceanic crust, strong reflections characterize the uppermost mantle. Comparison between the reflection pattern and previous deep refraction and MT data indicates some agreement away from the coast and lack of correlation in the area of possible fossil oceanic crust near the coast.  相似文献   

6.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

7.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

8.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

9.
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland- This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.  相似文献   

10.
We have used the S wave receiver function (SRF) technique to investigate the crustal thickness beneath two seismic profiles from the CHARGE project in the southern central Andes. A previous study employing the P wave receiver function method has observed the Moho interface beneath much of the profiles. They found, however, that the amplitude of the P to S conversion was diminished in the western part of the profiles and have attributed it to a reduction of the impedance contrast at the Moho due to lower crustal ecologitization. With SRF, we have successfully detected S to P converted waves from the Moho as well as possible conversions from other lithospheric boundaries. The continental South American crust reaches its maximum thickness of ∼70 km (along 30°S between 70°W and 68.5°W) beneath the Principal Cordillera and the Famatina system and becomes thinner towards the Sierras Pampeanas with a thickness of ∼40 km. Negative phases, possibly related to the base of the continental and oceanic lithosphere, can be recognized in the summation traces at different depths. By comparing our results with data obtained from previous investigations, we are able to further constrain the thickness of the crust and lithosphere beneath the central Andes.  相似文献   

11.
Summary. The thickening plate theory proposed by Yoshii and Parker & Oldenburg for the oceanic lithosphere is extended to include the continental lithosphere. The theory is based on the assumption that the lithosphere—asthenosphere boundary is a solidus and that as a result solidification of the top of the asthenosphere is occurring. Observational data imply that the relationship between the plate thickness and basement age for the North American continent is y = 1.7 √ t + (50 ± 10), where y (km) is the plate thickness and t (Myr) is the basement age.
The theory is tested against changes with basement age of the observed surface heat-flow and seismic estimate of plate thickness. The following conclusions are inferred:
(1) The changes both of the observed heat flow and plate thickness with basement age are explained by this theory.
(2) The surface erosion and vertical distribution of radiogenic heat sources are important factors in controlling the thickening process of the continental lithosphere.
(3) The equality of the average surface heat-flow over the oceans and over the continents is a consequence of a faster release of latent heat at the lithosphere—asthenosphere boundary under the oceans, instead of a higher heat production in the continental crust.  相似文献   

12.
Summary. The Hatton Bank passive continental margin exhibits thick seaward dipping reflector sequences which consist of basalts extruded during rifting between Greenland and Rockall Plateau. Multichannel seismic reflection profiling across the margin reveals three reflector wedges with a maximum thickness near 7 km, extending from beneath the upper continental slope to the deep ocean basin. We present results of the velocity structure within the dipping reflector sequences at eight locations across the margin, interpreted by synthetic seismogram modelling a set of multichannel expanding spread profiles parallel to the margin. At the top of some reflector sequences, we observe a series of 100 m thick high- and low-velocity zones, which are interpreted as basalt flows alternating with sediments or weathered and rubble layers. At the profile locations, the base of the dipping reflectors correlates with P -wave velocities near 6.5 km s−1. However, elsewhere the reflectors appear to extend significantly deeper than the inferred 6.5 km s−1 velocity contour, indicating that the velocity structure may not be controlled solely by lithological boundaries but also by metamorphic effects. Shear-waves were observed on two lines, permitting the calculation of Poisson's ratio. The decrease in Poisson's ratio from 0.28 to near 0.25 in the upper 5 km of crust may also indicate the effect of metamorphism on seismic properties, or alternatively may be explained by crack closure under load.  相似文献   

13.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

14.
Seismic reflection and GLORIA side-scan sonar data obtained on RRS Charles Darwin cruise CD64 reveal new information on the styles of deformation in the Gorringe Bank region, at the eastern end of the Azores–Gibraltar plate boundary. Previous studies suggest that Gorringe Bank was formed by the overthrusting of a portion of the African plate upon the Eurasian plate. The new seismic data show, however, that the most intensely deformed region is located south of Gorringe Bank, on the northern flanks of a NW–SE-trending submarine ridge which includes the Ampere and Coral Patch seamounts. The deformation is expressed as long-wavelength (up to 60  km), large-amplitude (up to 800  m) folds in the sediments and underlying acoustic basement, which in places are associated with one or more reverse faults, and as a fabric of short-wavelength folds (up to 3  km) with a NE trend. In contrast, the same sedimentary units when traced beneath the flanking plains are undeformed, except for some faults with a small throw (~30  m), some of which offset the seafloor. GLORIA data show that recent deformation is broadly distributed over the region. Structural trends rotate from 45° in the west to 70° in the east of the region, nearly perpendicular to the NW-verging plate motion vectors as determined from plate kinematic models. Flexure modelling suggests that a portion of Gorringe Bank has loaded 152  Ma oceanic lithosphere and that a maximum of 50  km of shortening has occurred at Gorringe Bank since the mid-Miocene. Our observations support a model in which there is no single plate boundary in the region, rather that the deformation is distributed over a 200–330  km wide zone.  相似文献   

15.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

16.
We have examined the effects of the spinel-garnet phase transition on subsidence of extensional sedimentary basins. For a constant positive Clapeyron slope ( dP/dT ), the phase boundary moves downwards in the syn-rift and upwards in the post-rift phase. For a non-linear Clapeyron curve ( dP/dT > 0 above 900°C and dP/dT < 0 below 900°C), theory predicts for the reaction of the spinel-garnet phase transition, the direction of phase boundary movement is dependent on the stretching factor, the position of the Clapeyron curve and the lithospheric thickness. A smaller syn-rift and larger post-rift subsidence are predicted for a deeper phase boundary and a thicker lithosphere. The model with a non-linear Clapeyron curve is applied to the subsidence histories of a young extensional basin (Gulf of Lion) and an old continental margin (eastern Canada). The observed syn-rift uplift and the larger post-rift subsidence can be reasonably explained by this model, where the optimum depth of the phase boundary for eastern Canada (˜90 km) is consistent with the estimate from seismic observations and is larger than that for the Gulf of Lion (˜ 50 km). The depth of the spinel-garnet phase boundary is sensitive to the composition of mantle rocks and increases with the extraction of basaltic components from the lithosphere, compatible with our result that the phase boundary is deeper for an older and thicker lithosphere. Thus the surface movement associated with the rifting for these areas may reflect the chemical evolution of the continental lithosphere.  相似文献   

17.
Large Igneous Provinces (LIP) are of great interest due to their role in crustal generation, magmatic processes and environmental impact. The Agulhas Plateau in the southwest Indian Ocean off South Africa has played a controversial role in this discussion due to unclear evidence for its continental or oceanic crustal affinity. With new geophysical data from seismic refraction and reflection profiling, we are able to present improved evidence for its crustal structure and composition. The velocity–depth model reveals a mean crustal thickness of 20 km with a maximum of 24 km, where three major units can be identified in the crust. In our seismic reflection records, evidence for volcanic flows on the Agulhas Plateau can be observed. The middle crust is thickened by magmatic intrusions. The up to 10 km thick lower crustal body is characterized by high seismic velocities of 7.0–7.6 km s−1. The velocity–depth distribution suggests that the plateau consists of overthickened oceanic crust similar to other oceanic LIPs such as the Ontong-Java Plateau or the northern Kerguelen Plateau. The total volume of the Agulhas Plateau was estimated to be 4 × 106 km3 of which about 10 per cent consists of extruded igneous material. We use this information to obtain a first estimate on carbon dioxide and sulphur dioxide emission caused by degassing from this material. The Agulhas Plateau was formed as part of a larger LIP consisting of the Agulhas Plateau itself, Northeast Georgia Rise and Maud Rise. The formation time of this LIP can be estimated between 100 and 94 (± 5) Ma.  相似文献   

18.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   

19.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

20.
Summary. Seismic refraction data collected in the northern Appalachians provide an unusual opportunity to use wide-angle reflections to examine the lower crust and upper mantle. The PmP phase, clearly identified on several hundred records, has been used to construct an isopach map of the crust which shows a stepwise regional thickening of the crust beneath the axis of the Appalachians. The data have been examined to times of up to 40 s two-way travel time to investigate the possibility of coherent upper-mantle reflections such as those recently observed by BIRPS on near-vertical data northwest of Britain. Although substantial coherent energy appears after the PmP phase, synthetic seismogram modelling shows that all of these arrivals are explicable by S-phases, converted phases and multiples from within the crust. We conclude that in this region of the northern Appalachians we have not detected any significant regionally extensive reflecting horizons within the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号