首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic and sequence stratigraphic architecture of the central western continental margin of India (between Coondapur and south of Mangalore) has been investigated with shallow seismic data. Seismic stratigraphic analysis defined nine seismic units, that are configured in a major type-1 depositional sequence possibly related to fourth-order eustatic sea-level changes, comprising regressive, lowstand, transgressive and highstand systems tracts. The late-Quaternary evolution of the continental margin took place under the influence of an asymmetric relative fourth-order sea-level cycle punctuated by higher frequency cycles. These cycles of minor order were characterised by rapid sea-level rises and gradual sea-level falls that generated depositional sequences spanning different time scales. During the regressive periods, dipping strata were developed, while erosional surfaces and incised valleys were formed during the lowstands of sea level. Terraces, v-shaped depressions, lagoon-like structures observed on the outer continental shelf are the result of the transgressive period. In the study area we have recognised a complex erosional surface that records a long time span during the relative sea-level fall (regressive period) and the following sea-level lowstand and has been reworked during the last transgression. We also infer that sedimentation processes changed from siliciclastic sedimentation to carbonate sedimentation and again to siliciclastic sedimentation, marking an important phase in the late-Quaternary evolution of the western continental shelf of India. We attribute this to an abrupt climate change at the end of the oxygen isotope stage 2, between the Last Glacial Maximum and the Bølling-Allerod event (14?000 yr BP). This sensitive climate change (warming) favoured the formation of reefs at various depths on the shelf, besides the development of Fifty Fathom Flat, a carbonate platform on the outer shelf off Bombay developed prior to 8300 yr BP. The highstand systems tracts were deposited after the sea level reached its present position.  相似文献   

2.
High-frequency sequences composed of mixed siliciclastic-carbonate deposits may exhibit either vertical or horizontal changes between siliciclastics and carbonates. Vertical facies shifts occur between systems tracts and define a ‘reciprocal sedimentation’ pattern, typically consisting of transgressive/highstand carbonates and forced regressive/lowstand siliciclastics, although variations from this rule are common. Mixed systems with lateral facies change, usually typifying transgressive and/or highstand systems tracts, may exhibit proximal siliciclastics and distal carbonates or vice-versa, although variations may also occur along depositional strike. The marked variability of mixed siliciclastic-carbonate sequences makes the definition of a universal sequence stratigraphic model impossible, as the composition and geometries of systems tracts may change considerably, and sequence stratigraphic surfaces and facies contacts may vary in terms of occurrence and physical expression. However, some resemblance exists between siliciclastic sequences and mixed sequences showing lateral facies changes between siliciclastics and carbonates. In particular, these mixed sequences display 1) a stratal architecture of the clastic part of the systems tracts that is comparable to that of siliciclastic deposits, 2) a dominant role of the inherited physiography and of erosional processes, rather than carbonate production, in shaping the shelf profile, and 3) a local lateral juxtaposition of siliciclastic sandstones and carbonate bioconstructions due to hydrodynamic processes. These observations are helpful in predicting the location of porous and potential sealing bodies and baffles to fluid flow at the intra-high-frequency sequence scale, and ultimately they are useful for both petroleum exploration and production.  相似文献   

3.
The Eocene Niubao Formation of the Lunpola Basin, a large Cenozoic intermontane basin in central Tibet, is an important potential hydrocarbon source and reservoir unit. It represents ∼20 Myr of lacustrine sedimentation in a half-graben with a sharply fault-bounded northern margin and a low-angle flexural southern margin, resulting in a highly asymmetric distribution of depositional facies and sediment thicknesses along the N-S axis of the basin. An integrated investigation of well-logs, seismic data, cores and outcrops revealed three third-order sequences (SQ1 to SQ3), each representing a cycle of rising and falling lake levels yielding lowstand, transgressive, and highstand systems tracts. Lowstand systems tracts (LST) include delta and fan delta facies spread widely along the gentle southern margin and concentrated narrowly along the steep northern margin of the basin, with sublacustrine fan sand bodies extending into the basin center. Highstand systems tracts (HST) include expanded areas of basin-center shale deposition, with sublacustrine fans, deltas and fan deltas locally developed along the basin margins. Sequence development may reflect episodes of tectonic uplift and base-level changes. The southern margin of the basin exhibits two different structural styles that locally influenced sequence development, i.e., a multi-step fault belt in the south-central sector and a flexure belt in the southeastern sector. The sedimentary model and sequence stratigraphic framework developed in this study demonstrate that N2 (the middle member of Niubao Formation) exhibits superior hydrocarbon potential, characterized by thicker source rocks and a wider distribution of sand-body reservoirs, although N3 (the upper member of Niubao Formation) also has good potential. Fault-controlled lithologic traps are plentiful along the basin margins, representing attractive targets for future exploratory drilling for hydrocarbons.  相似文献   

4.
The siliciclastic Gadvan Formation from Abadan Plain, southwestern Iran, is highly bioturbated and allows relationships between changes in ichnocoenoses within a depositional system to be documented and placed in a high-resolution sequence stratigraphic framework. Relying on the sedimentary and ichnological characteristics, the siliciclastic succession is divided into two facies associations: a wave-dominated offshore-shoreface complex and a tide-river influenced delta. The first includes facies that have been deposited in shelf-offshore, upper offshore, lower shoreface and upper/middle shoreface environments, the latter includes facies that have been deposited in prodelta and delta front. Integrated ichnologic and sedimentologic studies of the Gadvan Formation, allow distinction between prodelta and delta front and open marine deposits. With the identification of maximum flooding and ravinement surfaces as bounding surfaces of the stratal units, detailed analysis on systematic changes in the stacking pattern (cycle thickness, cycle type, and facies proportion) are made. Eight ichnocoenoses could be differentiated in the studied sections. The positions of the ichnocoenoses within genetically related stratal units (genetically related ichnocoenoses), indicate three large-scale cycles (DS1 to DS3, from oldest to youngest). The cyclical nature of the Gadvan Formation is attributed to low-amplitude eustasy in greenhouse conditions formed under interaction of eustatic high-frequency cycles and longer term tectonically driven sea-level variations during the long-term transgressive sea-level trend of the early Cretaceous. Stratigraphic architectural style of sequences DS1 to DS3 (which includes scarce evidence of lowstand deposits, partial or total truncation of the HST, and predominance of thick transgressive deposits), is remarkably similar to long-term transgressive sea-level trend of the Early Cretaceous across the Arabian Plate. This study suggests a more relatively seaward position of the siliciclastic successions of the Gadvan Formation of Abadan Plain than the Mesopotamian Basin (upper Zubair Formation equivalent in western Iraq and Kuwait), which would be concordant with the prevailing view of an easterly prograding coastline across the Arabian Plate.This study reveals important sedimentological and ichnological features and permits the development of predictive models for the paleoenvironmental and sequence stratigraphical significance of trace fossil assemblages that can be readily compared or translated to analogous depositional systems worldwide. The ichnological analysis is based on cores and can be especially applied to evaluate the applicability of current ichnological models to the study of Cretaceous reservoirs of western Iraq, Kuwait and western Saudi Arabia.  相似文献   

5.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

6.
Seismic and bathymetric data from the Çanakkale Strait and its extensions onto the shelves of the Marmara and Aegean seas indicate that the strait was formed mainly by an erosional event. Four seismic units are observed on seismic profiles. The lower two of these (units 4 and 3) constitute the basement of a regionally widespread erosional unconformity (ravinement), which developed during marine isotope stage 2 (MIS 2). The two upper units (units 2 and 1), which overlie the ravinement surface, form a higher-order sequence. Sequence stratigraphic analysis indicates that units 2 and 1 deposited as lowstand and highstand systems tracts respectively, since the end of MIS 2. The transgressive systems tract is represented by a major erosional event which occurred throughout the Çanakkale sill area when the Mediterranean-Marmara Sea connection and, hence, the Çanakkale Strait was formed. The existence of the erosive ?arköy Canyon along the shelf edge of the southern Marmara Sea demonstrates that the flow direction causing the erosion was from south to north, thus proving that it was produced by Mediterranean water flowing over the sill into the Marmara Sea basin.  相似文献   

7.
Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin.The integrated analysis shows that the canyon fill consists of four 3rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3rd-order sequence boundaries). Within each 3rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5.The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs.Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.  相似文献   

8.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

9.
Three small turbidite systems (Almeria, Sacratif, and Guadiaro), each tens of kilometres long, are developed in the complex morpho-structural setting of the northern Alboran Sea and have similar primary architectural elements (canyons, channel-levee systems, lobes). However, comparison reveals differences in the axial gradients of their canyons, depth/physiographic location, morphological framework, and lateral and longitudinal sedimentary shifts of turbidite deposition. The depositional architecture and sedimentary evolution from late Pliocene to Quaternary seems to be conditioned by number of submarine feeding sources (canyons), sea-level fluctuations and local tectonic (e.g. margin/canyon-channel gradients, faults). We group the Alboran turbidite systems into two models: mud/sand-rich submarine point-source and mud/sand-rich multiple submarine source ramp.  相似文献   

10.
The Adriatic Sea is a modern epicontinental basin where the late Quaternary transgressive systems tract shows substantial variations within two contrasting shelf domains, separated by a 250-m-deep remnant basin: a lowgradient shelf in the north, and a steeper margin in the south. Four differentiated sedimentary responses reflect contrasting physiographic domains and differences in the ratio between oceanographic regime and sediment input during relative sea-level rise. The progressive widening of the Adriatic epicontinental shelf, up to seven times its low-stand extent, also determines variations in the style of transgressive deposition by controlling major changes in oceanographic circulation.  相似文献   

11.
To improve the understanding of the distribution of reservoir properties along carbonate platform margins, the connection between facies, sequence stratigraphy, and early diagenesis of discontinuities along the Bathonian prograding oolitic wedge of the northeastern Aquitaine platform was investigated. Eight facies are distributed along a 50 km-outcropping transect in (1) toe-of-slope, (2) infralittoral prograding oolitic wedge, (3) platform margin (shoal), (4) open marine platform interior, (5) foreshore, and (6) terrestrial settings. The transition from shallow platform to toe-of-slope facies is marked in the field by clinoforms hundred of meters long. Carbonate production was confined to the shallow platform but carbonates were exported basinward toward the breakpoint where they cascaded down a 20–25° slope. Ooid to intraclast grainstones to rudstones pass into alternating marl-limestone deposits at an estimated paleodepth of 40–75 m. Three sea-level falls of about 10 m caused the formation of discontinuities corresponding to sequence boundaries. Along these discontinuities, erosional marine hardgrounds formed in a high-hydrodynamic environment at a water depth of less than 10 m, displaying isopachous fibrous cements and meniscus-type cements. The cements pass landward into meniscus and microstalactitic forms along the same discontinuities, which are characteristic of subaerial exposure. During the deposition of transgressive systems tracts, carbonate accumulation remained located mostly on the shallow platform. Energy level increased and carbonates were exported during the deposition of highstand systems tracts forming the infralittoral prograding oolitic wedge. During the deposition of lowstand systems tracts, carbonate production fell to near zero and intraclast strata, derived from the erosion of hardgrounds on the shallow platform, prograded basinward. Early diagenetic cements are related exclusively to discontinuities that are not found within the prograding wedge because of the continuous high sedimentation rate under lower hydrodynamic conditions. This absence of early cementation within the infralittoral prograding oolitic wedge was conducive to porosity conservation, making such features good targets for carbonate reservoir exploration. This study proposes a novel sequence stratigraphy model for oolitic platform wedges, including facies and early diagenesis features.  相似文献   

12.
Earth’s climate during the Proterozoic Eon was marked by major glacial events with evidence for large continental ice sheets on many cratons, and with sedimentological data indicating that glaciers had extended to sea-level. This paper emphasizes the sedimentological and sequence stratigraphic responses to glaciations and evaluates the major driving forces of glaciations during the Precambrian. First- and second-order sequences are recognized related to continental-scale fragmentation and formation of marine rift basins wherein sedimentary rocks indicate glacial influences and pronounced tectonic-climatic linkages. Coarse syn-rift deposits are typically characterized by mass flow diamictites and conglomerates. It is important to undertake sedimentological facies and sequence stratigraphic analysis of these syn-rift and capping passive margin sequences, as well as of slope turbidite deposits which formed if enhanced subsidence of the basins was occurring. More generally, latitude and syn-rift tectonic uplift can cause formation of glacial ice and enhance distinctive glacial influences on extensional basin sedimentation, thus supporting a causal relationship between thermal subsidence and the formation of glacier ice on inland areas. During the Precambrian, however, it is suggested that long-lived marine-terminated glaciers also situated at low paleolatitudes, were related to an extensional tectonic setting. In such settings, glacial deposits associated with sedimentary sequences of distinctively different origin, e.g. carbonate and chemically mature siliciclastic sequences, can well be used to detect the prominent sequence boundaries to verify depositional systems tracts. Internal sediment stacking patterns in sequences are indicative of dynamic processes along glaciated continental margins and without always having the need for global synchroneity. In glacially influenced rift basins and continental margins it is important to recognize the sequence boundaries of significant subaerial unconformities and their correlative conformities. A sequence boundary is a chronostratigraphically significant surface always produced as a consequence of a change in relative sea-level. These can then be well related to initiation and decay of glaciations, however on-land glacial deposits in a very few cases are prevented from later erosion. Attenuation of continental crust during rifting and breakup of the continent raises relative sea-level and also many of the shallow intra-cratonic basins subsided below sea-level, in favourable conditions being affected by major continental glaciations.Paleoproterozoic and Neoproterozoic glacial deposits are known in North and South America, South Africa, India, Western Australia and Fennoscandia. Against this background, continental-scale to global glaciations in the Precambrian appear to be possible, however views on the causes and timing of these glaciations, as well as on planetary extent of ice cover are still contradictory. There is a need to continue detailed sedimentological studies of pre-glacial and post-glacial deposits as well as to interpret syn-glacial lithofacies for their inferred transportation and depositional processes. Pre-glacial deposits, especially, should provide a new target to help us understand the processes that initiated these Precambrian glaciations. The sequence stratigraphic approach with understanding of the stacking pattern of depositional systems could prevent oversimplification and use of just single events to explain the complexity of evolution of glacially influenced Precambrian continental margin sediments.  相似文献   

13.
A Quaternary stratigraphic stacking pattern on the Faro-Albufeira drift system has been determined by analysing a dense network of high-resolution single-channel seismic reflection profiles. In the northern sector of the system an upslope migrating depositional sequence (elongate separated mounded drift) parallel to the margin has been observed associated with a flanking boundary channel (Alvarez Cabral moat) that depicts the zone of Mediterranean Outflow Water (MOW) acceleration and/or focussing. A consequent erosion along the right hand border and deposition on the left hand flank is produced in this sector. The sheeted aggrading drift is the basinward prolongation of the elongate separated mounded drift, and developed where the MOW is more widely spread out. The overall sheeted contourite system is separated into two sectors due to the Diego Cao deep. This is a recent erosional deep that has steep erosional walls cut into Quaternary sediments. Two major high-order depositional sequences have been recognised in the Quaternary sedimentary record, Q-I and Q-II, composed of eight minor high-order depositional sequences (from A to H). The same trend in every major and minor depositional sequence is observed, especially in the elongate mounded drift within Q-II formed of: A) Transparent units at the base; B) Smooth, parallel reflectors of moderate-high amplitude units in the upper part; and C) An erosional continuous surface of high amplitude on the top of reflective units. This cyclicity in the acoustic response most likely represents cyclic lithological changes showing coarsening- upward sequences. A total of ten minor units has been distinguished within Q-II where the more representative facies in volume are always the more reflective and are prograding upslope with respect to the transparent ones. There is an important change in the overall architectural stacking of the mounded contourite deposits from a more aggrading depositional sequence (Q-I) to a clear progradational body (Q-II). We suggest that Q-I and Q-II constitute high-order depositional sequences related to a 3rd-order cycle at 800 ky separated by the most prominent sea-level fall at the Mid Pleistocene Revolution (MPR), 900–920 ky ago. In more detail the major high-order depositional sequences (from A to H) can be associated with asymmetric 4th-order climatic and sea-level cycles. In the middle slope, the contourite system has a syn-tectonic development with diapiric intrusions and the Guadalquivir Bank uplift. This syn-tectonic evolution affected the overall southern sheeted drift from the A to F depositional sequences, but G and H are not affected. These last two depositional sequences are less affected by these structures with an aggrading stacking pattern that overlaps the older depositional sequences of the Guadalquivir Bank uplift and diapiric intrusions.  相似文献   

14.
The Late Devonian to Early Mississippian Bakken Formation in the Williston basin of North Dakota, USA, shows a tri-partite subdivision: a middle mixed carbonate-siliciclastic member is sandwiched in-between two black siliciclastic mudstones, the lower and upper Bakken member shales. However, the transition from the lower shale member to the middle member does not represent a gradual coarsening but contains in places several millimeter - to centimeter-thick siliciclastic mudstones and carbonates that consist of three facies: (1) a glauconitic carbonate-rich siliciclastic mudstone, (2) a carbonate mud-to wackestone, and (3) an echinoderm wacke-to packstone with shell fragments. These three facies are present in many (all?) of the cores close and directly in the basin center in Mountrail County, North Dakota. At least one of these three facies is present in all 23 cores included in this study.This thin carbonate unit at the transition between the lower and the middle Bakken members is interpreted as representing the remnants of the transgressive systems tract. It is assumed that relative sea-level fell before deposition of the middle Bakken member establishing a proximal coarse-grained to distal fine-grained depositional transect that successively migrated into the basin. During the subsequent transgression, the siliciclastic input was low to absent, and the entire sedimentary system switched to depositing carbonates. The proximal to distal transect during this time showed coarse-grained packstones (and grainstones?) close to the shoreline, and a fining outwards towards the distal parts of the basin. This transgression also eroded what remained of the regressive and most of the subsequent transgressive sediments, leaving only the thin carbonate layer behind. Evidence for the regression, even though no sediment is directly preserved along the lower to middle Bakken member contact, comes from the fill of clastic dykes that cut through the lower Bakken member shale. The fill of the clastic dykes is partly siliciclastic and partly carbonate and not similar to any of the surrounding sediment. This indicates that these dykes must have originated before the middle Bakken member was deposited, yet the overlying sediment must have been carbonate at some point and siliciclastic another time. As it is not present anymore, this sediment must have been entirely removed by erosion.The here presented model suggests that the Bakken Formation reflects two entire sea-level oscillations. The first encompasses the lower Bakken member shale and the siliciclastic regressive portion of the lowstand only preserved as infill of the clastic dykes. The subsequent transgression deposited the carbonates now blanketing the lower to middle Bakken member transition, and the highstand and subsequent regression plus lowstand are represented by the middle Bakken member. The transgressive surface and therewith the onset of the topmost Bakken transgression is marked by the transition from the middle to the upper Bakken shale member.  相似文献   

15.
Sequence stratigraphy analysis of high resolution seismic profiles (Geopulse, Uniboom and 3.5 kHz) of late Pleistocene-Holocene sediments has been carried out on five sectors of the Spanish continental margin. Four types of depositional settings are distinguished in these sectors: (1) low subsident ramps (Alborán Margin-Cádiz Gulf); (2) high subsident (2m/kyr) ramps (Alicante-Valencia); (3) “Ria”-type morphology on the Atlantic passive margin (Ria de Muros); and (4) fault-scarp morphology systems with subsidence (Balearic Margin). A Type 1 sequence is interpreted in all these sectors, being composed of lowstand systems tract, transgressive systems tract and highstand systems tract. This conforms to the basic concepts of sequence stratigraphy and each systems tract correlates with a particular part of the last eustatic hemicycle. Characteristic shelf features such as terraces, terraces with beach deposits and progradational sediment wedges evidence a complex stacking of lesser sub-sequences in all the systems tracts, which must be related to very-short period sea-level stillstands and fall. We propose a very high resolution sequence stratigraphy model in which the last sea-level hemicycle is punctuated by: “P” cycles (4500 years), which give rise to the neo-glacial events; “h” cycles (2200-950 years), and “c” cycles (500-50 years). These cycles interact with each other, thus establishing the placing of the high and low sea levels.

This attention to detail: (1) explains sedimentary evolution on both the shelf and upper slope during late Pleistocene-Holocene time; (2) illustrates some departures from the classical sequence stratigraphy model; and (3) also demonstrates that the late Pleistocene-Holocene eustatic curve is not one simple transgression but is modulated by three differing-period cycle groups below the Milankovitch band. Our model is delimited by fluctuating sea level during Pleistocene-Holocene times. Such features should be identifiable on any continental margin. However, localized features occur due to subsidence and continental shelf morphology which determ ine the location and depth of sedimentary bodies generated in each eustatic cycle.  相似文献   


16.
Erosional unconformity surfaces are key indicators for the variations in eustatic sea level, ocean dynamics and climatic conditions which significantly affect depositional environments of sedimentary successions. Using a dense grid of 2D seismic data, we present new evidence from a frontier basin, the offshore Durban Basin, of a mid-Miocene age erosional unconformity that can be correlated with analogous horizons around the entire southern African continental margin.In the Durban Basin, this unconformity is typified by the incision of a mixed carbonate-siliciclastic wedge and ramp margin by a series of submarine canyons. Epeirogenic uplift of southern Africa characterised this period, with erosion and sediment bypass offshore concomitant with increases in offshore sedimentation rates. Although epeirogenic uplift appears to be the dominant mechanism affecting formation of the identified sequence boundary, it is postulated that an interplay between global eustatic sea-level fall, expansion of the east Antarctic ice sheets, and changes in deep oceanic current circulation patterns may have substantially contributed to erosion during this period.  相似文献   

17.
Eight seismic profiles from the southwestern Caspian Sea were analyzed to establish the sedimentary environments and depositional history in the South Caspian Basin since Pliocene times. Based on reflection terminations, nine sequence boundaries (S1 to S9) were identified and traced across the study area. Consequently, nine depositional sequences (S1–S9) were defined on the basis of seismic facies analysis. The results suggest a transition from non-marine sedimentation in the Lower Pliocene to marine-dominated conditions in the Upper Pliocene (S1–S4). Marine conditions then continued to the present time; however, several sea-level changes led to the formation of sequences S5 to S9. Although no local sea-level curve is available due to a lack of well data, there is good agreement between the seismic stratigraphy of the study area and a published regional sea-level curve.  相似文献   

18.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

19.
This contribution to this special volume represents the first attempt to comprehensively describe regional contourite (along-slope) processes and their sedimentary impacts around the Iberian margin, combining numerically simulated bottom currents with existing knowledge of contourite depositional and erosional features. The circulation of water masses is correlated with major contourite depositional systems (CDSs), and potential areas where new CDSs could be found are identified. Water-mass circulation leads to the development of along-slope currents which, in turn, generate contourite features comprising individual contourite drifts and erosional elements forming extensive, complex CDSs of considerable thickness in various geological settings. The regionally simulated bottom-current velocities reveal the strong impact of these water masses on the seafloor, especially in two principal areas: (1) the continental slopes of the Alboran Sea and the Atlantic Iberian margins, and (2) the abyssal plains in the Western Mediterranean and eastern Atlantic. Contourite processes at this scale are associated mainly with the Western Mediterranean Deep Water and the Levantine Intermediate Water in the Alboran Sea, and with both the Mediterranean Outflow Water and the Lower Deep Water in the Atlantic. Deep gateways are essential in controlling water-mass exchange between the abyssal plains, and thereby bottom-current velocities and pathways. Seamounts represent important obstacles for water-mass circulation, and high bottom-current velocities are predicted around their flanks, too. Based on these findings and those of a selected literature review, including less easily accessible ??grey literature?? such as theses and internal reports, it is clear that the role of bottom currents in shaping continental margins and abyssal plains has to date been generally underestimated, and that many may harbour contourite systems which still remain unexplored today. CDSs incorporate valuable sedimentary records of Iberian margin geological evolution, and further study seems promising in terms of not only stratigraphic, sedimentological, palaeoceanographic and palaeoclimatological research but also possible deep marine geohabitats and/or mineral and energy resources.  相似文献   

20.
The 380 m thick fine-grained Vischkuil Formation comprises laterally extensive hemipelagic mudstones, separated by packages of graded sandstone and siltstone turbidites, and volcanic ash beds, and is an argillaceous precursor to a 1 km thick sand-prone basin floor fan to shelf succession. The Vischkuil Formation provides an insight into the process by which regional sand supply is initiated and for testing sequence stratigraphic principles in a basin plain setting. Regionally mapped 1–2 m thick hemipelagic mudstone units are interpreted as condensed drapes that represent the starved basin plain equivalents of transgressive systems tracts and maximum flooding surface on the coeval shelf (now removed during later uplift). The section above each mudstone drape comprises siltstone turbidites interpreted as highstand systems tract deposits and a surface of regional extent, marked by an abrupt grain size shift to fine sandstone. These surfaces are interpreted as sequence boundaries, related to abrupt increases in flow volume and delivery of sand grade material to the basin-plain. The interpreted lowstand systems tract comprises sandstone-dominated turbidites and is overlain by another hemipelagic mudstone drape. The upper Vischkuil Formation is marked by three 20–45 m thick debrites, with intraformational sandstone clasts up to 20 cm in diameter that can be mapped over 3000 km2. In each case, debrite emplacement resulted in widespread deformation of the immediately underlying 3–10 m of silty turbidites. A sequence boundary is interpreted at the base of each deformation/debrite package. Six depositional sequences are recognised and the interfered energy shift across each successive sequence boundary and LSTs include a larger volume of sandstone increases up section. The lower two sequences thin to the NW and show NW-directed palaeocurrents. The four overlying sequences show a polarity switch in palaeocurrent directions and thinning, to the E and SE. Sequence 6 is overlain sharply by the 300 m thick sandstone dominated Fan A of the Laingsburg Formation. The LST debrites may indicate gradual development of major routing conduits that subsequently fed Fan A. The polarity shift from westward flowing turbidity currents to an eastward prograding deepwater to shelf system represents establishment of a long term feeder system from the west. Sand supply to the Karoo basin floor was established in an incremental, stepwise manner. Given the early post-glacial setting in an icehouse climate, glacio-eustatic sea-level changes are considered to have been the main control on sequence development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号