首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyse material transport in inland seas, a horizontal two-dimensional dispersion equation is derived, and the dispersion coefficient due to the combined effect of vertical turbulent mixing and vertical shear of both a steady current and a tidal current is studied. In the present study, the assumption that velocity is uniform in horizontal planes is not necessary, and velocity has a free vertical profile; thus the dispersion coefficient formulated is general, and is represented by a tensor of the second order. The properties of the dispersion coefficient in the horizontal two-dimensional dispersion model are also investigated, and it is shown that the time-averaged dispersion coefficient due to the tidal current over a tidal period is approximately half that due to the steady current, if the velocity amplitude and the vertical profile of the tidal current are the same as those of the steady current (a similar result was presented byBowden (1965) for horizontal one-dimensional models). Finally, the dispersion coefficient in Hiuchi-Nada (Hiuchi Sound) in the central part of the Seto Inland Sea is evaluated by using the model. The values of the dispersion coefficient in that region range from 103 cm2 s–1 to 105 cm2 s–1 when vertical turbulent diffusivity is taken to be 50 cm2 s–1.  相似文献   

2.
An analytical method for describing horizontal matter dispersion in shear currents is presented using a tensor expression from the point of view that matter dispersion due to the shear effect should be one of the principal mixing dilution processes. Although the behavior of horizontal dispersion is considerably more complicated than common longitudinal dispersion, the present study elucidates the vertical structure of dispersion and the dispersing process from the initial to the stationary stage, besides the usual depth-averaged dispersion coefficient at the stationary stage. As one of the typical applications of horizontal dispersion, dispersion due to the pure drift current with an Ekman layer is examined theoretically using the present method. This examination reveals that the displacement of the centroid and the major axis of dispersion are twisted in the vertical direction more than the direction of the current vector forming the Ekman spiral; that the variance increases in proportion to the third power of the elapsed time; and that the dispersion coefficient at the stationary stage remains constant, independent of the depth normalized by an Ekman layer thickness. Such dependence of the dispersion coefficient in the steady current is shown to be different from that in the oscillatory current, which is inversely proportional to the depth normalized by a Stokes layer thickness. This is considered to be induced by the difference of the vertical profiles of the first order moment in both currents, that is, the shear region of the first order moment is restricted around the floor by the alternation of the current shear in the oscillatory current while it is diffused in the whole depth in the steady current.  相似文献   

3.
The fundamental nature of the mass flux due to the shear effect is examined analytically in a basin with steady and oscillatory currents to promote a better understanding of the mass transport process in coastal waters. The currents are given from solutions of the simplified motion equation so as to be consistent with the diffusion equation. The matter concentration used is given by an analytical solution of the diffusion equation with the settling flux term contained. Mass flux, yielding the depth-averaged dispersion coefficient, is rather varied vertically in both steady and oscillatory currents. In the oscillatory current with a Stokes layer in particular, the vertical profile of flux is more complicated and even negative flux is induced near the basin floor. This negative flux does not necessarily yield a negative value of the vertically averaged dispersion coefficient. The exact dispersion coefficient given by the flux analysis is realized only in the steady state of the matter concentration distribution, though we can scarcely observe the steady state in the actual sea. The vertically uniform longitudinal dispersion coefficient at the stationary stage is shown to be caused from the vertical complexity of mass flux by the action of the vertical diffusing and the settling flux. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The generalized two-dimensional vortex equation is derived for an incompressible viscous fluid in a rotating system for a vertically averaged flow taking into account the variability of the boundary layer characteristics. The resulting equation contains parameters and their spatial derivatives determined by the second moments of functions describing the vertical profiles of the flow components. Numerical experiments demonstrate the influence of the boundary-layer horizontal inhomogeneity on the evolution of the vorticity field of a pair of atmospheric vortices.  相似文献   

5.
An approximate theory is constructed to describe quasi-two-dimensional viscous incompressible flows. This theory takes into account a weak circulation in the vertical plane and the related divergence of the two-dimensional velocity field. The role of the nonlinear terms that are due to the interaction between the vortex and potential components of velocity and the possibility of taking into account the corresponding effects in the context of the concept of bottom friction are analyzed. It is shown that the nonlinear character of friction is a consequence of the three-dimensional character of flow, which results in the effective interaction of vortices with vertical and horizontal axes. An approximation of the effect of this interaction in quasi-two-dimensional equations is obtained with the use of the coefficient of nonlinear friction. The results based on this approximation are compared to the data of laboratory experiments on the excitation of a spatially periodic fluid flow.  相似文献   

6.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

7.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   

8.
For settlement of the well-known problem of contemporary radar imaging models,i.e.,the pmblem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal watels at at high radar frequency bands(X-band and C-band),the impact of the ocean surface mixed layer turbulence and the significance of strat-ified oceanic model on SAR remote sensing of internal solitary waves are proposed.In the north of the South China Sea by utilizing seme observed data of background field the nonlinearity coefficient,the dispersion coefficient,the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately.Through simulations of internal tide transfor-mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of intereal wave field are obtained.The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m,but the maximum current speeds take place at depth 20 m in this area of the sea(about 20°30'N,114°E)in August.It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation.The obtained results provide the possibility for the simulation of SAR signatures of inter-nal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

9.
Research was conducted to study the hydrodynamic efficiency of a foil with aft-swept wing tips. A potential flow based time domain panel method was formulated to predict the performance of a lunate and rectangular foil in large amplitude, unsteady motion. Skin drag was approximated and boundary layer growth and separation were also estimated. Hydrodynamic efficiency was evaluated in terms of propulsive efficiency and thrust coefficient of the foil. Results are presented for a lunate shaped planform and for a rectangular foil. Predictions show that the lunate shaped planform has a substantially higher propulsive efficiency (13% higher) than the rectangular foil under heavy load conditions when the feathering parameter is zero, throughout a range of reduced frequencies (0.2 to 1.8). Under a medium load condition, however, the rectangular foil gave a higher propulsive efficiency at reduced frequencies less than 0.5 and the same efficiency value at a reduced frequency of 1.8. For a practical range of reduced frequencies between 0.5 and 1.0, the lunate tail gave higher propulsive efficiency. The lunate planform gave a lower thrust coefficient at a heavy load and higher thrust at a medium load condition than the rectangular planform for all reduced frequencies.  相似文献   

10.
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three non-dimensional parameters (Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients. The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.  相似文献   

11.
Pradip Deb Roy  Sukamal Ghosh   《Ocean Engineering》2006,33(14-15):1935-1953
The paper presented is a solution of shallow water wave force, using small amplitude linear wave theory on two-dimensional vertically submerged circular thin plates under three different configurations: (1) a surface-piercing circular thin plate, (2) a submerged circular thin plate, and (3) a bottom-standing circular thin plate. Finally Morison's equation is used for the determination of wave force which is based on the linear wave theory. The plate is submerged in water near the shore on uniformly sloping bottom. The solution method is confined in a finite domain, which contains both the region of different depth of water and the plate. Laplace's equation and boundary value problems are solved in a finite domain, by the method of separation of variables and the small amplitude linear wave theory. The variation of horizontal force by single particle, total horizontal force and moment with respect to the wave amplitude are obtained at different depth of water and at different wave period. It is observed that the force and moment are converging with the increase of wave period and the gradients of force and moment with respect to the wave amplitude are extremely high for lower wave period.  相似文献   

12.
Diapycnal Mixing (DM) within the upper 2000m of the global ocean is calculated by a fine-scale parameterization using the multiyear-mean density gridded product that created by employing all the Argo float observations to date through the recently published equation of seawater TEOS-10. The geographic distribution of Argo-derived DM derived in this study is spatial-dependent and varies with latitude and depth. The magnitude and pattern of DM is favorably validated by comparisons with previous studies. Furthermore, the mixing coefficient tensor K is calculated and analyzed. Components of the tensor fitting for the geopotential coordinate models are also presented. It is found that the tensor components in horizontal direction, Kxx and Kyy, have similar magnitude and distribution pattern. In the vertical, Kzz is enhanced over regions with rough topography and strong wind (e.g., Westerly region), suggesting agreement with previous estimates. This work presents a scheme to estimate the DM and mixing coefficient tensor using Argo observations, and offers a useful Argo-based mixing product for the purpose of promoting the study and modeling of ocean circulation and other processes.  相似文献   

13.
For settlement of the well-known problem of contemporary radar imaging models, i. e. , the problem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal waters at high radar frequency bands ( X-band and C-band), the impact of the ocean surface mixed layer turbulence and the significance of strat- ified oceanic model on SAR remote sensing of internal solitary waves are proposed. In the north of the South China Sea by utilizing some observed data of background field the nonlinearity coefficient, the dispersion coefficient, the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately. Through simulations of internal tide transfor- mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of internal wave field are obtained. The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m, but the maximum current speeds take place at depth 20 m in this area of the sea (about 20°30'N, 114°E) in August. It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation. The obtained results provide the possibility for the simulation of SAR signatures of internal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

14.
吕彪 《中国海洋工程》2013,27(4):509-522
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k-ε equations in this model. The eddy viscosity is calculated from the k-ε turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field,and then applied to simulate the tidal flow in the Bohai Sea.  相似文献   

15.
邹志利  金红 《海洋工程》2012,30(2):38-45
建立具有色散性的水平二维非线性波浪方程,方程的非线性近似到了三阶。方程以波面升高和自由表面速度势表达的微分-积分型数学方程,给出方程的数值求解方法和算例,对方程积分项的处理给出了计算方法。计算结果与Boussinesq方程模型和缓坡方程模型的对应计算结果进行了对比。  相似文献   

16.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

17.
Line integral convolution(LIC)is a useful visualization technique for a vector field.However,the output image produced by LIC has many problems in a marine vector field.We focus on the visual quality improvement when LIC is applied in the ocean steady and unsteady flow field in the following aspects.When a white noise is used as the input in a steady flow field,interpolation is used to turn the discrete white noise into continuous white noise to solve the problem of discontinuity.The"cross"high-pass filtering is used to enhance the textures of streamlines to be more concentrated and continuity strengthened for each streamline.When a sparse noise is used as the input in a steady flow field,we change the directions of background sparse noise according to the directions of vector field to make the streamlines clearer and brighter.In addition,we provide a random initial phase for every streamline to avoid the pulsation effect during animation.The velocities of vector field are encoded in the speed of the same length streamlines so that the running speed of streamlines can express flow rate.Meanwhile,to solve the problem of obvious boundaries when stitching image,we change the streamline tracking constraints.When a white noise is used as an input in an unsteady flow field,double value scattering is used to enhance the contrast of streamlines;moreover,the"cross"high-pass filtering is also adopt instead of two-dimensional high-pass filtering.Finally,we apply the above methods to a case of the surface wave field in typhoon condition.Our experimental results show that applying the methods can generate high-quality wave images and animations.Therefore,it is helpful to understand and study waves in typhoon condition to avoid the potential harm of the waves to people's lives and property.  相似文献   

18.
The Lagrangian diffusion equation appropriate for the dispersion of current followers (e. g., floats, drogues, drifters) is proposed. The analytical solution to the equation is obtained for a uniform deformation field, characterized by Lagrangian deformations and anisotropic eddy diffusivities both varying with time. Expressions are derived for the patch area and its elongation and rotation. For small values of elapsed time after the initial release the patch area can be accounted for by the exponential of the cumulative value of the horizontal divergence; the relative rate of change of the patch area can be accounted for by the horizontal divergence.  相似文献   

19.
The boundary integral element method based on Green's formula is applied to the analysis of transient flow problem in corrugated bottom tanks. The problem is formulated as a two-dimensional linear, initial boundary value problem in terms of a velocity potential. The Laplace equation and the boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by the application of Green's formula. Finite Difference discretization is applied timewise. Initially a triangular wave on the free surface is assumed to be formed. The height of the triangular corrugated bottom is varied between 1/10 and 1/5 of the tank depth. The form of the free surface and the equipotential lines for the flow in the tank are presented at different time steps. An accuracy analysis is performed and distortion in time is considered. Proper coefficients for solutions are derived and presented. The results show that utilization of triangular corrugated bottoms may help to regulate the flow in tanks.  相似文献   

20.
Threshold of Sediment Movement in Different Wave Boundary Layers   总被引:3,自引:2,他引:3  
A review of former studies on the onset of sediment movement under wave action reveals that the Shields criterion obtained in unidirectional steady flow can also be applicable to oscillatory unsteady flow when the boundary layer is the same. In this paper, through comparison of different boundary layers in wave and steady flow conditions, a new criterion is presented which can be used to predict the threshold of sediment movement under wave action. The criterion curve shows good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号