首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
星载合成孔径雷达影像干涉处理时所需方位向配准精度因成像模式的差异而有所不同,目前在精密轨道条件下以几何配准为基础辅以影像信息的配准方案因其严格的理论模型和较高的精度成为干涉处理的首选。本文以TerraSAR-X影像为例,论证了不同成像模式影像所需的配准精度和卫星轨道精度,并通过理论分析和试验证明了精密轨道条件下,利用几何配准即可满足TerraSAR-X等卫星的条带模式影像干涉处理的需要;聚束模式影像需要在几何配准的基础上利用影像相干性或谱分集进一步优化配准结果。鉴于增强谱分集偏移量估计精度最高,本文进一步利用增强谱分集对比分析了不同轨道不同DEM条件下的几何配准误差。研究结果表明:卫星轨道切向误差是几何配准的主要误差源,目前常用3种DEM几何配准差异远小于0.001个像素,均可满足Sentinel-1影像干涉配准的需要。  相似文献   

2.
Recent studies have demonstrated the usefulness of global positioning system (GPS) receivers for relative positioning of formation-flying satellites using dual-frequency carrier-phase observations. The accurate determination of distances or baselines between satellites flying in formation can provide significant benefits to a wide area of geodetic studies. For spaceborne radar interferometry in particular, such measurements will improve the accuracy of interferometric products such as digital elevation models (DEM) or surface deformation maps. The aim of this study is to analyze the impact of relative position errors on the interferometric baseline performance of multistatic synthetic aperture radar (SAR) satellites flying in such a formation. Based on accuracy results obtained from differential GPS (DGPS) observations between the twin gravity recovery and climate experiment (GRACE) satellites, baseline uncertainties are derived for three interferometric scenarios of a dedicated SAR mission. For cross-track interferometry in a bistatic operational mode, a mean 2D baseline error (1σ) of 1.4 mm is derived, whereas baseline estimates necessary for a monostatic acquisition mode with a 50 km along-track separation reveal a 2D uncertainty of approximately 1.7 mm. Absolute orbit solutions based on reduced dynamic orbit determination techniques using GRACE GPS code and carrier-phase data allows a repeat-pass baseline estimation with an accuracy down to 4 cm (2D 1σ). To assess the accuracy with respect to quality requirements of high-resolution DEMs, topographic height errors are derived from the estimated baseline uncertainties. Taking the monostatic pursuit flight configuration as the worst case for baseline performance, the analysis reveals that the induced low-frequency modulation (height bias) fulfills the relative vertical accuracy requirement (σ<1 m linear point-to-point error) according to the digital terrain elevation data level 3 (DTED-3) specifications for most of the baseline constellations. The use of a GPS-based reduced dynamic orbit determination technique improves the baseline performance for repeat-pass interferometry. The problem of fulfilling the DTED-3 horizontal accuracy requirements is still an issue to be investigated. DGPS can be used as an operational navigation tool for high-precision baseline estimation if a geodetic-grade dual-frequency spaceborne GPS receiver is assumed to be the primary instrument onboard the SAR satellites. The possibility of using only single-frequency receivers, however, requires further research effort.Deutsche Forschungsgemeinschaft (DFG) research fellow until Sept. 2004 at the Microwaves and Radar Institute, Deutsche Zentrum für Luft- und Raumfahrt (DLR) e.V., 82234 Weßling, Germany  相似文献   

3.
This letter describes the concept of using delta-K technique on interferometric synthetic aperture radar (InSAR) data for deriving the snow water equivalent (SWE) of dry snow-covered ground by utilizing the presence of scatterers in both datasets. The main scattering contribution from a dry snow cover is from the snow-ground interface. Thus, the interferometric phase of two SAR images, one with no snow and one with dry snow cover, contains information on the SWE. By performing a delta-K processing of the two SAR scenes followed by averaging, an estimation of the SWE can be achieved. The first step in the delta-K InSAR processing is to split the band into two nonoverlapping subfrequency band images. The resulting two subband images then contain two new carrier frequencies with a small delta frequency or delta-K separation. The next step is to multiply the two subband images together to obtain the delta-K image, one for summer and one for winter. Finally, the delta-K interferometric SAR image is generated by multiplying the two delta-K images from summer and winter together. In this letter, experimental results using European Remote sensing Satellite 1 (ERS-1) data from a summer and winter situation show that the delta-K phase can be estimated to a few degrees accuracy for an area of 10/spl times/10 km/sup 2/ corresponding to an SWE accuracy of approximately 100 mm.  相似文献   

4.
杨磊  赵拥军  王志刚 《测绘学报》2007,36(2):163-168
在推导各散射信号功率计算方法的基础上,提出基于功率和干涉相位联合估计的TLS-ESPRIT方法。因为干涉图像中的各主散射波和干涉相位能被分别估计,所以该算法可以利用同一分辨单元中不同散射机制后向散射信号功率的不同,将干涉相位分类实现散射中心分离。该方法通过提取两个占优势的相位得到两个高度,从而分别检测出森林的植被层和地表,特别是当散射波不相关并有不同的极化特性时,该方法有较好的性能,从而提高植被高度参数的估计精度。详细阐述该方法的原理和实施步骤,并通过对SIR-C/X-SAR的L波段实际数据进行分析处理,验证算法的有效性。  相似文献   

5.
A dual-beam along-track interferometric synthetic aperture radar that is entirely self-contained within an aircraft pod has been developed by the University of Massachusetts to study sea surface processes in coastal regions. The radar operates at 5.3 GHz with a bandwidth of up to 25 MHz. System hardware is described. Initial test flights aboard the National Oceanic and Atmospheric Administration's WP-3D research aircraft were performed to evaluate system performance over land and water surfaces. Imagery were collected for fore and aft squinted beams, though no interferometric data were collected. Notable look-angle dependences are observed in the sea surface normalized radar cross section under very low wind conditions.  相似文献   

6.
基于武汉市CORS系统的双频非差载波相位观测数据,利用改进的神经网络方法建立区域电离层模型,并通过单频GPS精密单点定位的计算实例来分析该模型的精度。计算实例表明,当基准站间的距离小于100km时,基于神经网络的区域电离层模型的平均外符合精度为0.03m,对于时段长度为4h的单频PPP静态时段解可以达到厘米级的定位精度。  相似文献   

7.
天绘二号卫星工程设计与实现   总被引:1,自引:0,他引:1  
楼良盛  刘志铭  张昊  钱方明  黄艳 《测绘学报》1957,49(10):1252-1264
天绘二号卫星系统是我国首个基于干涉合成孔径雷达技术的微波测绘卫星系统,也是我国第1个近距离编队卫星系统,是国际上继德国TanDEM-X系统后的第2个微波干涉测绘卫星系统,并在国际上首次提出了通过设计双频成像解决干涉相位绝对模糊问题的方法,彻底摆脱了对地面控制数据的依赖。该系统工作于X频段,设计分辨率为3 m,处于500 km的太阳同步轨道,由两颗对等的卫星组成,采用异轨道面卫星编队、一发双收雷达收发模式的技术体制,可以快速测制全球数字表面模型和雷达正射影像。本文通过对干涉基线体制、卫星编队构型及雷达收发模式的选择,提出了天绘二号卫星技术体制;并从系统任务、主要性能及组成3个方面进行了工程设计;从总体论证、关键技术攻关及验证、型号研制3个阶段阐述了工程实现情况;最后介绍了卫星系统在轨测试验证情况。测试结果表明,所有指标达到了工程设计要求,产品精度与TanDEM-X系统相当,满足1:5万比例尺测图精度要求,从而验证了天绘二号卫星工程设计思路正确,工程实现的方法合理可行。  相似文献   

8.
A new solution of the direct and reverse geodetic problems has been deduced without series expansion or coordinate transformation. The unknown parameters are directly expressed as explicit functions of the given parameters; the forms of the functions are closed formulas deduced by elementary mathematics using the chord of normal section. Numerical examples prove that the formulas are valid for distances from 40 km to 15 000 km on the surface of the ellipsoid.  相似文献   

9.
将步进频率连续波技术和干涉测量技术相结合而构成的地面微波干涉雷达系统GB-radar,可用于获取高精度、高分辨率的变形信息,以实现对地面目标的静动态高精度监测.本文介绍了基于该技术的IBIS-S系统在桥梁变形观测中的应用,分析了测量误差,通过实例验证了地面微波干涉雷达技术可以精细地测量桥梁挠度的动态变化,精度高,可以真实地反映结构物的动力特性.  相似文献   

10.
《测量评论》2013,45(78):338-348
Abstract

Radar can be applied to surveying for precise measuren1ent of long lines, and as a navigational aid and position-fixing device for an aircraft performing a photographic survey. Trials of the radar method have recently been carried out in Australia using a modified “Shoran” equipment. The results of a large number of radar measurements of six distances, varying from 160 to 310 miles in length, indicate that an accuracy of 7 parts in 105 can be achieved. Equipment errors constitute the immediate limit to accuracy, but reasonable modifications would yield a figure of 2 parts in 105. Radar measurements can be completed in a fraction of the time required by normal ground survey methods, since a measurement of upwards of a hundred miles is made in a single step.

As an aid to photographic surveying a straight-line track indicator actuated by data from the “Shoran” equipment has been designed and flight tested. Its performance enabled a pilot taking aerial photographs to keep the aircraft to within an average departure of less than 0.02 mile from any desired straight-line flight path.  相似文献   

11.
利用Envisat/ASAR雷达影像处理后获取的2008年11月10日青海大柴旦Mw6.3级地震InSAR同震形变场数据和LN算法反演观测值含有粗差情况下的地震Okada矩形位错模型断层参数;断层深度为19.691 5 km,倾角为56.892 3°,长度为16.499 3km,宽度为6.854 8km,倾滑量为0.832 6 m,中心经度为95.884 7°,中心纬度为37.529 5°,走向方位角为116.411 5°,地震矩为3.108 4×1018 Nm(Mw6.295 0)。反演结果表明,当观测值含有粗差时,LN算法在1范数下可以有效抵抗粗差的干扰,充分利用已有先验信息的同时顾及观测、线性化等原因引起的系数矩阵误差的影响。  相似文献   

12.
基于SAR干涉点目标分析技术的城市地表形变监测   总被引:1,自引:0,他引:1  
通过深入研究干涉点目标的相位模型,提出基于空间搜索的邻近点目标干涉相位差解缠方法,用以计算点目标的地形残差和线性形变,以及分离点目标大气延迟相位和非线性形变相位的时空域滤波方法,解决干涉点目标分析中的关键问题.最后,以苏州地区地表沉降监测为应用试验,利用形成的SAR干涉点目标形变信息提取技术,获取苏州市区1992-2002年间的地表沉降信息.研究结果与已有文献记录保持比较好的一致性,证明SAR干涉点目标技术完全可以发展成为应用于城市地表形变监测的实用化技术.
Abstract:
Interferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derivecl deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.  相似文献   

13.
The performance of interferometric synthetic aperture radar (INSAR)-based boreal forest stem volume retrieval is strongly affected by weather conditions around the time of the SAR image acquisitions. Since weather conditions cannot be controlled, the suitability of a particular interferometric pair for stem volume retrieval can only be assessed afterward. In this letter, four objective measures based on observed forest coherence were compared in assessing the suitability of interferometric pairs for stem volume retrieval. These suitability measures can be used to identify the best and worst pairs, i.e., the ones with the most and least favorable weather conditions. Stem volume retrievals were performed using single European Remote Sensing (ERS-1/2) Tandem interferometric pairs by inverting a backscattering-coherence model for boreal forests. A total of 14 ERS Tandem image pairs acquired in varying weather conditions were studied, and the stem volume retrieval performance was assessed against ground-based stem volume estimates on 134 boreal forest stands. Stem volume retrieval performance as measured by R/sup 2/-values between INSAR-estimated stem volumes and ground truth was found to be directly proportional to boreal forest coherence. The interferometric coherence-contrast (ICC), i.e., the difference in coherence between sparsest and densest boreal forest stands was found to be the best of the four studied suitability measures. The ICC could be used as a suitability parameter in the selection of the best interferometric pairs for operational boreal forest stem volume retrieval.  相似文献   

14.
顾及地形因素的卡尔曼滤波相位解缠算法   总被引:1,自引:0,他引:1  
相位解缠是InSAR进行数字高程模型提取和地表形变测量的关键步骤.提出一种顾及地形因素的卡尔曼滤波相位解缠算法.该算法通过在卡尔曼滤波的状态空间模型中引入与地形因素相关的输入控制变量来实现.由于干涉条纹直接反映地形的变化起伏,局部条纹频率与局部地形坡度密切相关,考虑采用局部条纹频率估计作为输入控制变量.在局部频率估计中...  相似文献   

15.
使用ERS-1/2干涉测量SAR数据生成DEM   总被引:12,自引:2,他引:12  
史世平 《测绘学报》2000,29(4):317-323
干涉合成孔径雷达(INSAR)数据已被证明能生产精确的数据高程模型(DEM),我们已开发了从单视SAR复影像数据自动生成数字高程模型的新软件,基于SAR多视强度影像的最小二乘曩像匹配被用于复影像对的配准,达到很高的配准精度(0.01~0.05像元精度)。一种新的计算目标点3维坐标(X,Y,Z)的方程还被提出,卫星轨道,姿态和基线参数以及相位常数被纳入在方程中并被表示了时间的线性函数,利用至少6个地面控制点能够同时估算这些参数,本文还给出了意大利埃特地区ERS-1/2SAR数据处理结果。  相似文献   

16.
ENVISAT/ASAR多角度干涉雷达数据山区DEM生成及精度分析   总被引:1,自引:0,他引:1  
李新武  郭华东  李震 《遥感学报》2009,13(2):276-281
在地形起伏较大的山区用干涉SAR生成DEM时,合适的入射角是获取高精度DEM的重要参数之一.本文基于ENVISAT/ASAR多角度干涉雷达数据,SRTM 90米分辨率的DEM以及1:5万的数字化DEM数据,从定性和定量的角度比较和分析了干涉SAR在获取山区DEM时,入射角对DEM精度的具体影响.结果表明:对于ASAR的多入射角干涉雷达数据,在不同入射角条件下由于雷达叠掩和透视收缩的影响,获取的DEM精度差别很大,入射角带来的影响相当显著,比如IS2和IS4角度得到的DEM的精度差超过了6米.因此,在山区干涉SAR地形成图时,必须对入射角的大小进行严格的选择.  相似文献   

17.
星载差分合成孔径雷达干涉测量(differential interferometric synthetic aperture radar,DInSAR)技术已经广泛应用于大范围的地表形变监测,但星载合成孔径雷达(synthetic aperture radar,SAR)数据获取的地表形变易受大气噪声的影响,且长时间的重访周期会导致像对之间的失相干。为了有效减弱这些影响,提出了利用零空间基线的车载合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)系统监测公路边坡形变的方法。在车载双天线系统采集不同时相的公路边坡SAR数据时,通过轨道控制使得异时相干涉对的空间基线接近零,从而使得利用DInSAR数据进行形变信息提取时可以减少去平地相位的过程,极大地简化了差分干涉处理的流程。以中国湖北省武汉市某区域获取的车载双天线InSAR数据为例,使用所提出的方法对7个布设的角反射器点进行形变精度分析,得到形变值均方根误差为2.206 mm。  相似文献   

18.
目前SAR极化干涉测量地形参数已经成为一种新兴的前沿技术。在现有提取极化干涉相位的技术中,由空间谱估计理论发展而来的,利用MUSIC、TLS-ESPRIT算法获取干涉相位信息的方法正逐步完善起来。但由于SAR信号存在散射点的观测数据少的问题,利用上述方法往往不能得到更高精度的干涉相位。作者提出的基于酉ESPRIT算法估算干涉相位的方法,充分利用了复观测数据以及共轭数据中的信息,使得观测数据等效增加了一倍,从而提高了植被高度参数的估计精度。本文详细阐述了该方法的原理和实施步骤,并通过对SIR-C/X-SAR的L波段实际数据进行验证处理,表明酉ESPRIT算法十分有效。  相似文献   

19.
Rapid GPS ambiguity resolution for short and long baselines   总被引:3,自引:0,他引:3  
 A method of quick initial carrier cycle ambiguity resolution is described. The method applies to high-quality dual-band global positioning system observations. Code measurements on both frequencies must be available. The rapidity of the method is achieved through smoothing pseudoranges by phase observables and forming linear combinations between the phase observables. Two cases are investigated. Case 1: ionospheric bias is neglected (short distances); and case 2: the bias is taken into account (longer distances, more than, say, 10 km). The method was tested on six baselines, from 1 to 31 km long. In most cases, single-epoch ambiguity resolution was achieved. Received: 6 October 1999 / Accepted: 4 March 2002  相似文献   

20.
Flight test results from a strapdown airborne gravity system   总被引:3,自引:0,他引:3  
In June 1995, a flight test was carried out over the Rocky Mountains to assess the accuracy of airborne gravity for geoid determination. The gravity system consisted of a strapdown inertial navigation system (INS), two GPS receivers with zero baseline on the airplane and multiple GPS master stations on the ground, and a data logging system. To the best of our knowledge, this was the first time that a strapdown INS has been used for airborne gravimetry. The test was designed to assess repeatability as well as accuracy of airborne gravimetry in a highly variable gravity field. An east-west profile of 250 km across the Rocky Mountains was chosen and four flights over the same ground track were made. The flying altitude was about 5.5km, i.e., between 2.5 and 5.0km above ground, and the average flying speed was about 430km/h. This corresponds to a spatial resolution (half wavelength of cutoff frequency) of 5.07.0km when using filter lengths between 90 and 120s. This resolution is sufficient for geoid determination, but may not satisfy other applications of airborne gravimetry. The evaluation of the internal and external accuracy is based on repeated flights and comparison with upward continued ground gravity using a detailed terrain model. Gravity results from repeated flight lines show that the standard deviation between flights is about 2mGal for a single profile and a filter length of 120s, and about 3mGal for a filter length of 90s. The standard deviation of the difference between airborne gravity upward continued ground gravity is about 3mGal for both filter lengths. A critical discussion of these results and how they relate to the different transfer functions applied, is given in the paper. Two different mathematical approaches to airborne scalar gravimetry are applied and compared, namely strapdown inertial scalar gravimetry (SISG) and rotation invariant scalar gravimetry (RISG). Results show a significantly better performance of the SISG approach for a strapdown INS of this accuracy class. Because of major differences in the error model of the two approaches, the RISG method can be used as an effective reliability check of the SISG method. A spectral analysis of the residual errors of the flight profiles indicates that a relative geoid accuracy of 23cm over distances of 200km (0.1 ppm) can be achieved by this method. Since these results present a first data analysis, it is expected that further improvements are possible as more refined modelling is applied. Received: 19 August 1996 / Accepted: 12 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号