首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Liquid conductivity (EC) measurement was conducted for the samples collected from several snow pits and ice cores over the Qinghai-Xizang (Tibet) Plateau, with their time range covering seasonal, decadal and centennial scales. Unlike the previous attention mostly focused on the acidity (H+) responding to the solid conductance (ECM) of glacial ice, we introduce the alkalinity (OH) of snow and ice to show how it responds to EC. Strong linear relationship was established between EC and OH for these snow pits and ice cores. Positive correlation is also established between EC and major cations (Ca2+, Mg2+, Na+ and K+). Since the cations are known as the proxies for the intensity of mineral dust influx onto glaciers of the northern Qinghai-Xizang Plateau, we believe that EC could be used as an indicator for the history of dust input in deep ice core study. In fact, records in Guliya ice core since the Little Ice Age (LIA) indicate that dust load in glacier may depend on the combination of temperature and humidity. “Cold-dry” combination favors the dust arising, and results in higher EC and OH values, while “warm-wet” combination prevents dust form and EC and OH values are lower. In the past century, with the atmospheric warming and precipitation increasing over the northern plateau, which means an atmospheric condition of dust decreasing, both EC and OH displayed rapid decline.  相似文献   

2.
Mammals multiplied rapidly with the coming of Cenozoic era. They took the dominant position occu-pied by reptiles during the Mesozoic and became a superior group of vertebrates during the Cenozoic. Fossil mammals are useful for subdivision and dat-ing of Cenozoic terrestrial deposits, by virtue of their high evolutionary rates and high probability for being fossilized. The widespread Chinese Cenozoic sedi-ments, mainly pertaining to continental facies, contain abundant remains of mammals. T…  相似文献   

3.
During the period from 25 to 17 Ma BP, when the second plateau uplifting, i.e. the second phase of the Himalaya movement, occurred, the Qinghai-Xizang Plateau reached an altitude high enough to chbge the situation of the general circulation. Such an effect of the plateau on the atmospheric circulation was accompanied by the warrning of the tropical ocean, the enhancement of the cross equatorial current, the enlargement of the marginal sea basins in the east-southeastern Asia, the westward extending of the Asian continent and the regression of the Paratethys Sea. As a result, the thermal difference was enlarged, and the air currents were enhanced between continents and oceans; finally the Asian monsoon system, mainly the summer monsoon, was initiated. The former planet wind system was then substituted by the monsoon system, and this caused the important environmental changes, such as the large shrinkage of the dry steppe in Central Asia, and the extension of the humid forest zone in East Asia. Thme changes have been dated at 21.8 Ma BP on the Lingxia profile in the northeastern border of the Tibet Plateau, when the savanna was transformed into the forest. Project supported by the National Climbing Project and Chinese Academy of Sciences (KZ951-A1-204)  相似文献   

4.
祝意青  胡斌  李辉  蒋锋云 《中国地震》2005,21(2):165-171
用双三次样条模拟了1992~2001年间青藏高原东北缘重力变化时空分布信息,初步研究了本区的重力变化与地震活动及构造活动的关系。结果表明:①在地震孕育过程中,区域重力场出现有规律的变化并产生重力变化异常区或重力变化密集带。②在重力变化显著时段,以兰州为界,测区西北、东南和东北具有不同的重力变化特征。③重力变化与测区主要断裂构造带走向基本一致,重力变化等值线与断裂分布关系密切。  相似文献   

5.
INTRODUCTIONThe study of earthquakeforecast based on gravity measurement has been carried out for almost30yearsin China,and remarkable progress has been made(Jia Minyu,et al.,2000;Zhu Yiqing,etal.,2001).However,constrained byobservationtechniques and moni…  相似文献   

6.
26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.  相似文献   

7.
Using the 1961–1995 monthly averaged meteorological data from 148 surface stations in the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmospheric heat source/sink (<Qi>) and an analysis on its climatic features and relation to rainfall in China have been made. It is found that on the average, the atmospheric heat source over the QXP is the strongest in June (78 W / m2) and cold source is the strongest in December (−72 W/m2). The sensible heat of the surface increases remarkably over the southwest of the QXP, causing the obvious increase of <Qi> there in February and March, which makes a center of the atmospheric heat source appear over the north slope of the Himalayas. Afterwards, this center continues to intensify and experiences noticeable migration westwards twice, separately occurring in April and June. The time when the atmosphere over the east of the QXP becomes heat source and reaches strongest is one month later than that over the southwest of the QXP. In summer, the latent heat of condensation becomes a heating factor as important as the sensible heat and is also a main factor that makes the atmospheric heat source over the east of the QXP continue growing. On the interdecadal time scale, (Q1) of the QXP shows an abrupt change in 1977 and a remarkable increase after 1977. The atmospheric heat source of the spring over the QXP is a good indicator for the subsequent summer rainfall over the valleys of the Changjiang and Huaihe rivers and South China and North China. There is remarkable positive correlation between the QXP heat source of summer and the summer rainfall in the valleys of the Changjiang River.  相似文献   

8.
INTRODUCTION ThesustainedcollisionoftheIndiaplateintotheEurasiaplatesince50MaBPgaverisetotheintenseCenozoictectonicdeformationandupliftingofmountainsintheQinghai Xizang(Tibet)Plateauanditsvicinityandhadafar reachingimpactonthegeomorphicpatternsandenvironm…  相似文献   

9.
On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the firstorder blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with spacetime of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.  相似文献   

10.
In regards to the earthquakes recording M ≥ 5.0 that occurred in middle northern part of the Qinghai-Xizang (Tibet) Block from 1970 - 2003, in this study we describe the temporal and spatial centralization features of the weak earthquakes and the enhancement and anomalous quiescence of their seismic activity before main shocks through 4 parameters, which are basically not correlated: earthquake time centralization degree parameter Ct, earthquake space centralization degree parameter Cd, η value and weak earthquake frequency and so on. On the basis of calculation results, it has been seen that before earthquakes with M ≥ 5.0 took place in the middle northern part of the Qinghal-Xizang (Tibet) Block, the frequency of weak earthquakes often shows ascent and drop, their strength shows an obvious enhancement and the centralization distribution with time and space is evident.  相似文献   

11.
Li Ying 《中国地震研究》2005,19(2):192-200
We have studied the seismicity features of M_S≥5.0 earthquakes two years before strong earthquakes with M_S≥7.0 occurred in the central-northern Qinghai-Xizang (Tibet) block since 1920. The results have showed that there is an obvious gap or quiescence of M_S5.0~6.9 earthquakes near epicenters. We have also studied statistical seismicity parameters of M_S5.0~6.9 earthquakes in the same region since 1950. The results have showed that earthquakes with M_S≥7.0 occurred when earthquake frequency is relatively high and earthquake time, space accumulation degrees are rising. And the prediction effect R value scores are between 0.4~0.7. We have concluded that, before earthquakes with M_S≥7.0 in the central-northern Qinghai-Xizang (Tibet) block, M_S5.0~6.0 earthquake activity in the whole area increased and accumulated in time and space, but earthquakes with M_S≥7.0 occurred where M_S5.0~6.0 earthquake activity was relatively quiet.  相似文献   

12.
利用地震活动性指数A(6)值系统地定量化地对青藏高原北部地区1970年以来发生的中强地震的地震活动性特征进行了分析,确定了地震活动性增强异常的判据,即A(6)值≥4.5时为高值(地震活动性增强)异常。地震活动性增强异常出现后1~3个月为发震优势时段,其次是4~6个月。该判据通过了预报效能尺值评分的检验,可以用于地震预报实践。  相似文献   

13.
武汉东湖主要湖区的藻类与营养型评价   总被引:11,自引:3,他引:8  
况琪军  夏宜琤 《湖泊科学》1995,7(4):351-356
对东湖9个湖区藻类的群落结构、生长潜力、初级生产力和营养状况进行了比较研究。结果表明,9个湖区藻类的种类组成无明显差异,绿藻为主,蓝藻和硅藻次之;藻类的生长潜力和初级生产力各湖区差异较大,均以茶港湾重污染区最高和牛巢湖最低。根据各项指标综合分析,9个湖区水质优劣的顺序是:牛巢湖、汤林湖、后湖、郭郑湖、菱角湖、筲箕湖、庙湖、喻家湖和茶港湾重污染区。对东湖的大水面郭郑湖40年来藻类的有关参数进行比较发  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号