首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
Image analysis of over one hundred nearby galaxies (He, 2003) indicates that for any spiral galaxy image of small inclination there is evidence of two orthogonalsets of iso-ratio curves in different scales which, like curvilinear coordinate lines, expand over different galaxy components. This result sets a constraint on galaxy patterns and a general model equation which carries this constraint is given in its geometric form in He (2003). In the current paper the author reformulates the geometric equation into one quasilinearsystem of 3 partial differential equations with 3 dependents (the tangent direction of one set of iso-ratio curves and the two ratio profiles along the two sets of iso-ratio curves respectively). With one profile assumed to be a nonzero constant, there are two dependents and the system of two partial differential equations is a hyperbolic one. The author uses the standard method of characteristics and the boundary condition of ideal arms which are found by setting the above constant to be zero, to solve the hyperbolic system. This provides one analytic method to model galaxy patterns. Its varying parameters will be useful for galacticarm classification and for investigation of galaxy structure.  相似文献   

2.
3.
The way in which galaxy properties are influenced by environment is an important constraint on models of galaxy formation. Using the complete2dF Galaxy Redshift Survey (2dFGRS, see Colless et al., 2001),containing over 225,000 galaxy redshifts, we construct the largest and most uniform group catalogue to date. Here we present tests of our methodology, which is underpinned by mock 2dFGRS catalogues made from a combination of high resolution N-body simulations and the Cole et al. semi-analytic model of galaxy formation. Some basic characteristics of the 2dFGRS group catalogue are given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Supermassive black holes (BHs) obey tight scaling relations between their mass and host galaxy properties such as total stellar mass, velocity dispersion and potential well depth. This has led to the development of self-regulated models for BH growth, in which feedback from the central BH halts its own growth upon reaching a critical threshold. However, models have also been proposed in which feedback plays no role: so long as a fixed fraction of the host gas supply is accreted, relations like those observed can be reproduced. Here, we argue that the scatter in the observed BH–host correlations presents a demanding constraint on any model for these correlations, and that it favours self-regulated models of BH growth. We show that the scatter in the stellar mass fraction within a radius R in observed ellipticals and spheroids increases strongly at small R . At a fixed total stellar mass (or host velocity dispersion), on very small scales near the BH radius of influence, there is an order-of-magnitude scatter in the amount of gas that must have entered and formed stars. In short, the BH appears to 'know more' about the global host galaxy potential on large scales than the stars and gas supply on small scales. This is predicted in self-regulated models; however, models where there is no feedback would generically predict order-of-magnitude scatter in the BH–host correlations. Likewise, models in which the BH feedback in the 'bright' mode does not regulate the growth of the BH itself, but sets the stellar mass of the galaxy by inducing star formation or blowing out a mass in gas much larger than the galaxy stellar mass, are difficult to reconcile with the scatter on small scales.  相似文献   

6.
We present a generalization of the multiphase chemical evolution model (CEM) applied to a wide set of theoretical galaxies with different masses and evolutionary rates. This generalized set of models has been computed using the so-called universal rotation curve from Persic, Salucci & Steel to calculate the radial mass distribution of 44 theoretical protogalaxies. This distribution is a fundamental input which, besides its own effect on the galaxy evolution, defines the characteristic collapse time-scale or gas infall rate on to the disc. We have adopted 10 sets of values, between 0 and 1, for the molecular cloud and star formation efficiencies, as corresponding to their probability nature, for each one of the radial distributions of total mass. Thus, we have constructed a biparametric grid of models, depending on those efficiency sets and on the rotation velocity, whose results are valid in principle for any spiral or irregular galaxy. The model results provide the time-evolution of different regions of the disc and the halo along galactocentric distance, measured by the gas (atomic and molecular) and stellar masses, the star formation rate (SFR) and chemical abundances of 14 elements, for a total of 440 models. This grid may be used to estimate the evolution of a given galaxy for which only present time information, such as radial distributions of elemental abundances, gas densities and/or star formation, which are the usual observational constraints of chemical evolution models (CEMs), is available.  相似文献   

7.
We generate mock galaxy catalogues for a grid of different cosmologies, using rescaled N -body simulations in tandem with a semi-analytic model run using consistent parameters. Because we predict the galaxy bias, rather than fitting it as a nuisance parameter, we obtain an almost pure constraint on σ8 by comparing the projected two-point correlation function we obtain to that from the Sloan Digital Sky Survey (SDSS). A systematic error arises because different semi-analytic modelling assumptions allow us to fit the r -band luminosity function equally well. Combining our estimate of the error from this source with the statistical error, we find  σ8= 0.97 ± 0.06  . We obtain consistent results if we use galaxy samples with a different magnitude threshold, or if we select galaxies by b J-band rather than r -band luminosity and compare to data from the 2dF Galaxy Redshift Survey (2dFGRS). Our estimate for σ8 is higher than that obtained for other analyses of galaxy data alone, and we attempt to find the source of this difference. We note that in any case, galaxy clustering data provide a very stringent constraint on galaxy formation models.  相似文献   

8.
Chandra X-ray observations of rich, dynamically relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we discuss how Chandra observations may be used as a powerful tool for cosmological studies. By combining Chandra X-ray results on the X-ray gas mass fractions in clusters with independent measurements of the Hubble constant and the mean baryonic matter density of the universe, we obtain a tight constraint on the mean total matter density of the universe, Οm, and an interesting constraint on the cosmological constant, ΟΛ. Using these results, together with the observed local X-ray luminosity function of the most X-ray luminous galaxy clusters, a mass-luminosity relation determined from Chandra and ROSAT X-ray data and weak gravitational lensing observations, and the mass function predicted by numerical simulations, we obtain a precise constraint on the normalization of the power spectrum of density fluctuations in the nearby universe,σ8. We compare our results with those obtained from other, independent methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We have computed a set of multiphase chemical evolution models in which the radial mass distributions of each theoretical galaxy is calculated using the universal rotation curve from Persic, Salucci and Steel (1996). We obtain the chemical evolution for galaxies of different masses and morphological types by changing the efficiencies to form molecular clouds and stars according with these types. We obtain the radial distributions of diffuse and molecular gas densities, the star formation rate and abundances for 15 elements for each galaxy. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
Sérsic (Atlas de Galaxias Australes, Observatorio Astronómico, 1968) generalized the de Vaucouleurs law which follows the projected (observed) one dimensional radial profile of elliptical galaxies closely and Dehnen (Mon. Not. R. Astron. Soc. 265:250, 1993) proposed an analytical formula of the 3-dimensional light distributions whose projected line profile resembles the de Vaucouleurs law. This paper is involved to recover the Dehnen model and generalize the model to account for galaxy elliptical shapes by means of curvilinear coordinate systems and employing a symmetry principle. The symmetry principle maps an orthogonal coordinate system to a light distribution pattern. The coordinate system for elliptical galaxy patterns turns out to be the one which is formed by the complex-plane reciprocal transformation Z=1/W. The resulting spatial (3-dimensional) light distribution is spherically symmetric and has infinite gradient at its center, which is called spherical-nucleus solution and is used to model galaxy central area. We can make changes of the coordinate system by cutting out some column areas of its definition domain, the areas containing the galaxy center. The resulting spatial (3-dimensional) light distributions are axisymmetric or triaxial and have zero gradient at the center, which are called elliptical-shape solutions and are used to model global elliptical patterns. The two types of logarithmic light distributions are added together to model full elliptical galaxy patterns. The model is a generalization of the Dehnen model. One of the elliptical-shape solutions permits realistic numerical calculation and is fitted to all R-band elliptical images from Frei et al. (Astron. J. 111:174, 1996) galaxy sample. The fitting is satisfactory. This suggests that elliptical galaxy patterns can be represented in terms of a few basic parameters.  相似文献   

11.
This is a study concerning the investigation of galaxy formation and evolution in small-scale structures and the influence of the environment on the properties of galaxies. The environment plays a key role in the evolution of galaxies since it governs the type of encounters. We present results from low-resolution spectroscopy and R-band surface photometry of multiplets of galaxies found in low-density environments and compare them to cluster environments. Properties such as induced galaxy activity, star formation enhancements, AGN activity and the connection between merging and galaxy morphology are investigated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The shape of a galaxy is constrained both by mechanisms of formation (dissipational versus dissipationless) and by the available orbit families (the shape and amount of regular and stochastic orbits). It is shown that, despite the often very flattened shapes of banana and fish orbits, these boxlet orbits generally do not fit a triaxial galaxy in detail because, similar to loop orbits, they spend too little time at the major axis of the model density distribution. This constraint from the shape of fish orbits is relaxed at (large) radii where the density profile of a galaxy is steep.  相似文献   

13.
The structure, kinematics and dynamics of the Galactic stellar halo are reviewed including evidence of substructure in the spatial distribution and kinematics of halo stars. Implications for galaxy formation theory are subsequently discussed; in particular it is argued that the observed kinematics of stars in the outer Galactic halo can be used as an important constraint on viable galaxy formation scenarios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A strong evolution of galaxies is observed for 0<z<1, as evidenced by an increase of almost an order of magnitude in the galaxy star-formation rate density. However, it is known that dust obscuration has affected our understanding of galaxy evolution over this significant fraction of the age of the Universe. In order to study galaxy evolution free from dust induced biases, an ultra deep radio survey – the Phoenix Deep Survey – was initiated. With a detection limit of 60μJy, this homogeneous survey, complemented with multiwavelength (photometric and spectroscopic) observations, is being used to build a consistent picture of galaxy evolution. The ultra-deep radio source counts are presented, and interpreted using luminosity function evolutionary models. The discovery of extremely dusty galaxies from this survey, along with the clustering properties of the sub-mJy radio population, are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A speedy pixon algorithm for image reconstruction is described. Two applications of the method to simulated astronomical data sets are also reported. In one case, galaxy clusters are extracted from multiwavelength microwave sky maps using the spectral dependence of the Sunyaev–Zel'dovich effect to distinguish them from the microwave background fluctuations and the instrumental noise. The second example involves the recovery of a sharply peaked emission profile, such as might be produced by a galaxy cluster observed in X-rays. These simulations show the ability of the technique both to detect sources in low signal-to-noise ratio data and to deconvolve a telescope beam in order to recover the internal structure of a source.  相似文献   

16.
We present a ground-based, near-infrared, K -band image and a Hubble Space Telescope ( HST ) WFPC2 image of the brightest cluster galaxy in Abell 193 (IC 1695). This object was selected as the central cluster galaxy using X-ray information. Both images reveal a triple nucleus structure. Previously, this galaxy was thought to have only two nuclei. We present colours and magnitudes and a colour plot of the three nuclei. The nuclear structure and colours of the nuclei in this galaxy suggest that a merger may have taken place in its recent history.  相似文献   

17.
In order to simulate evolution of a large-scale magnetic field in a barred galaxy possessing a gaseous halo we apply a three-dimensional (3D) MHD numerical model. We solve a induction equation using a time-dependent velocity field of molecular gas resulting from self-consistent 3D N-body simulations of a galactic disk. The gaseous halo rotates differentially co-rotating with the disk. In our model we introduce the dynamo process causing the amplification of the magnetic field as well as the formation of field structures high above the galactic disk. The simulated magnetic fields are used to construct the models of a high-frequency (Faraday rotation-free) polarized radio emission that accounts for effects of projection and limited resolution, and is thus suitable for direct comparison with observations. We found that the resultant magnetic field correctly reproduces the observed structures of polarization B-vectors, forming coherent patterns well aligned with spiral arms and with the bar. The process initializing a wave-like behavior of the magnetic field, which efficiently forms magnetic maxima between the spiral arms, is demonstrated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
We present a method for radical linear compression of data sets where the data are dependent on some number M of parameters. We show that, if the noise in the data is independent of the parameters, we can form M linear combinations of the data which contain as much information about all the parameters as the entire data set, in the sense that the Fisher information matrices are identical; i.e. the method is lossless. We explore how these compressed numbers fare when the noise is dependent on the parameters, and show that the method, though not precisely lossless, increases errors by a very modest factor. The method is general, but we illustrate it with a problem for which it is well-suited: galaxy spectra, the data for which typically consist of ∼103 fluxes, and the properties of which are set by a handful of parameters such as age, and a parametrized star formation history. The spectra are reduced to a small number of data, which are connected to the physical processes entering the problem. This data compression offers the possibility of a large increase in the speed of determining physical parameters. This is an important consideration as data sets of galaxy spectra reach 106 in size, and the complexity of model spectra increases. In addition to this practical advantage, the compressed data may offer a classification scheme for galaxy spectra which is based rather directly on physical processes.  相似文献   

19.
By creating and analyzing two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with high-quality Chandra data,we detect a high-abundance (■0.7 Z⊙) arc,where the metal abundance is significantly higher than the surrounding regions by ■0.3Z⊙.This structure shows tight spatial correlations with the member galaxy PGC 046529,as well as with the arm-like feature identified on the X-ray image in the previous work of Randall et al.(2009).Since no apparent signature of AGN activity i...  相似文献   

20.
The galaxy population in rich local galaxy clusters shows a ratio of one quarter elliptical galaxies, two quarters S0 galaxies, and one quarter spiral galaxies. Observations of clusters at redshift 0.5 show a perspicuously different ratio, the dominant galaxy type are spiral galaxies with a fraction of two quarters while the number of S0 galaxies decreases to a fraction of one quarter (Dressler et al. 1997). This shows an evolution of the galaxy population in clusters since redshift 0.5 and it has been suspected that galaxy transformation processes during the infall into a cluster are responsible for this change. These could be merging, starburst or ram-pressure stripping. We use our evolutionary synthesis models to describe various possible effects of those interactions on the star formation of spiral galaxies infalling into clusters. We study the effects of starbursts of various strengths as well as of the truncation of star formation at various epochs on the color and luminosity evolution of model galaxies of various spectral types. As a first application we present the comparison of our models with observed properties of the local S0 galaxy population to constrain possible S0 formation mechanisms in clusters. Application to other types of galaxies is planned for the future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号