首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axial surveys were performed in the two river tributaries of the Cochin estuary, SW India during November 1988. Surficial sediments were subjected to sequential chemical extractions to delineate five metal fractions, namely, exchangeable, carbonate bound, easily reducible, organic/sulfide bound, and residual. The results indicated selective accumulation of Mn and Ni in carbonate bound and organic/sulfide forms, along with marginal amounts of Co in the exchangeable fraction. Large portions of Fe and Cr occurred in the residual fraction, whereas composite fractionation of Zn species was noticed. The exchangeable fractions of Fe and Cr as well as of easily reducible cobalt were below detection limits. The levels of Cr and Zn indicate anthropogenic inputs in this estuary, whereas Co and Ni show regional contamination exceeding natural levels. The analytical speciation procedure helps to deduce the sedimental diagenetic processes in the estuarine environment.  相似文献   

2.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

3.
The chemical forms of Fe, Mn, Zn, Cu, Cr, Pb and Cd in the Huanghe River sediments have been studied by sequential extraction techniques and the comparison with data from the Rhine River sediments has been made. In the Huanghe River sediments the average contents of metals, without exception, are below their respective contents in average shales and very close to their levels in Ca-poor granites. The major portion of metals is combined with the detrital and moderately reducible phases. Both in the Huanghe River and in the Rhine River sediments the distribution ratios of metals between the moderately reducible and the easily reducible phases are generally more than unity. However, the distribution ratios of Mn, Zn and Cd are obviously lower than those of Fe, Cr, Cu and Pb. As a result of contamination, the ratios of Fe, Cr, Cu and Pb show an apparent increase, but no remarkable ratio variation is observed for Mn, Zn and Cd. Metals in the Huanghe River sediments, especially Cu and Zn, show a tendency to be associated with the organic phase. The effect of carbonate on metal association preference seems to be less important than that in the Rhine River although there is higher content of carbonate in the Huanghe River sediments. Cd has a greater percentage of the exchangeable phase, which is similar to the result from the Rhine River sediments.  相似文献   

4.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

5.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

6.
The speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V Dmitrii Mendeleev in estuaries of the Ob and Yenisei rivers in the southwestern Kara Sea. Immediately after sampling, the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. The atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. The distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by the predominance of lithogenic or geochemically inert modes (70–95% of the bulk content), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of the total Mn amount and 15–30% Zn and Cu is contained in geochemically mobile modes. The spatiotemporal variations in the proportions of metal species in the surface layer of sediments along the nearly meridional sections and through the vertical sections of bottom sediments cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in the sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.  相似文献   

7.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

8.
Fifty sediment samples were collected from Osun (urban) and Erinle (suburban) rivers in addition to ten samples of the underlying rock types (schist and gneiss) and analyzed for elemental constituents while speciation of metals was determined by sequential analysis. Data were geochemically evaluated and ArcGIS was used to generate geochemical maps. Metal concentrations (ppm) in sub-urban and urban areas were Cd (0.2–0.2, 0.2–1.1), Cu (37.0–272.0, 49.0–970.0), Ni (6.0–27.0, 3.0–43.0), Pb (16.0–67.0, 15.0–2650.0), Zn (32.0–170.0, 50.0–987.0), Co (8.0–60.0, 2.0–86.0), Cr (26.0–153.0, 9.0–128.0), V (30.0–142.0, 9.0–135.0), and Mn (442.0–5100.0, 107.0–3930.0), respectively. In the rocks, Cu, Ni, Pb, Co, Cr, V, and Zn, concentrations (ppm) were below detection limit (BDL)-0.05, BDL-38.00; 6.23–12.00, BDL-20.00; 3.78–6.23, BDL-5.00; BDL-0.20, BDL-4.00; 5.00–9.00, BDL-66.00; 15.99–32.00, BDL-130.00; and 18.00–26.00, BDL-48.00, respectively, with Cu, Pb, Zn, Cd, and Mn of elevated concentrations in sediments compared with that of the rocks, being indication of additional anthropogenic sourcing. Calculated contamination indices revealed contamination for sediment from the urban areas compared to those from the sub-urban. High percentage of Pb (2.94–81.92%), Cu (31.69–45.95%), Zn (49.2–65.5%), Cd (31.69–45.95%), and Mn (12.13–37.50%) are hosted by the bio-available phases (carbonate, organic, and sulfide). The geochemical distribution of metals in the sediments of the Osun and Erinle rivers is governed by both geogenic (Ni-Cr-Co-V) and anthropogenic (Pb-Cd-Zn) activities. Elevated concentration and occurrences of the selected metals in the bio-available phases pose potential health risk to people in the urban area.  相似文献   

9.
The Tessier sequential extraction scheme (SES) was applied to sediments from the Odiel river catchment (Iberian Pyritic Belt, SW of Spain), one of the most acid rivers on Earth, to assess the chemical association (exchangeable, carbonatic, bound to manganese and iron oxides, bound to organic matter and residual mineral) of heavy metals (Zn, Cd, Pb, Cu, Cr, Mn, Ni, Fe, and Hg). Sediments are very heterogeneous in their textural characteristics, showing different grain size. Twenty-seven samples were studied from from areas along the Odiel River, from the source to the mouth, with special interest in the Odiel Marshes Natural Park due to its ecological significance. Samples were classified as sandy (especially at the river mouth with low iron oxide and organic matter content) and clay-silty (in the middle of the river catchment with high iron oxide content). The numerous sandy samples with low pH values explain the low levels of metals upstream, although potential metals contributions arise from mining and ore. However, the presence of sulfate in the mining area and carbonate at the mouth may explain the high presence of lead and iron in these sandy zones. Some percentage of mobile Ni, Cu, and Zn were detected in the mining area, but the elevated relative percentage of exchangeable Cd in the estuary is even more remarkable. The percentage of Zn bound to carbonate is considerable in the catchment but especially in the estuary. However, Cu is only detected in the carbonate phase downstream, in spite of the low concentration of carbonate, which represents a drawback in the application of the Tessier SES to these types of samples. Finally, relatively high percentages of residual, non-mobile, Hg and Pb were observed, in the estuarine and mining areas, respectively. Sand, lime, and clay fractions of representative samples from Areas I, II, and III were used in a metal speciation study. Mainly, the elements analyzed had accumulated in the non-residual fractions. In the mining area of the Pyrite Belt, the elements analyzed are mainly bound to Fe–Mn oxides (Fe + Mn + Cu + Cr + Pb + Mn ± Zn) and the organic matter/sulfide fraction (Ni + Zn + Hg ± Cd), independent of sediment grain size. In conclusion, we show that the results of the study of chemical speciation in sediments from acid rivers are independent of the sediment grain size considered.  相似文献   

10.
Sediment samples at 10 locations in the mainstem of the Yellow River were taken in 1994. Five forms (exchangeable, carbonate, organic, Fe/Mn oxide and residual) of metals were extracted by the Tessier method. The total contents and contents of the five forms of 16 metal elements (Li, Na, K, Ca, Sr, Ba, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Al) were determined by ICP-AES. In sediments of the Yellow River, except for Na, mobile elements (such as K, Ca) do not show a negative correlation with the immobile elements. Alkaline metals (Li, Na, and K), Ti, and Al exist mainly in the residual form. The exchangeable forms of alkaline-earth elements (Ca, Sr, and Ba) are the highest, and their residual forms go up with the increase of the period in the periodic table of elements. Half of Mn exists in the residual form, and its non-residual forms exist mainly in carbonate and oxide forms. Except Mn, the iron group elements (Fe, Co, Ni, V, Cr) mainly exist in the residual and oxide forms. High carbonate content of Ca does not cause high contents of other elements in carbonate form, showing that chemical weathering is not strong in the area.  相似文献   

11.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

12.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

13.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

14.
氨基泡塑的合成及其应用于富集地质样品中的痕量金   总被引:3,自引:2,他引:1  
采用泡塑(PUF)富集,AAS或ICP-OES测定地质样品中痕量金是常用的分析方法。与活性炭相比,PUF的选择性好,但吸附容量偏低,可将泡塑负载不同的萃取剂或修饰不同的官能团提高吸附容量。本文将聚醚型泡塑经盐酸水解制备成氨基泡塑(PUF-NH_2)。红外光谱和扫描电镜表征显示,PUF-NH_2峰形发生了明显红移(3376.5 cm-1),其中的氨基数量显著增加,另外PUF-NH_2的高分子出现明显断裂,发生水解后裸露出的氨基具有还原性,在吸附金的过程中易与金离子在PUF-NH_2表面发生氧化还原反应,形成金纳米颗粒。改性后的PUF-NH_2吸附容量达到96 mg/g,与PUF相比提高了8倍。将PUF-NH_2应用于富集地质样品中的金,经炭化灼烧、50%王水提取后用ICP-OES测定,金的加标回收率在95.0%~105.0%之间,检出限为0.15μg/g。实验证明用PUF-NH_2处理样品提高了富集倍数和分析灵敏度,有利于低品位矿石的分析。  相似文献   

15.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

16.
The sedimentary basin of Gavkhuni playa lake includes two sedimentary environments of delta and playa lake. These environments consist of mud, sand and salt flats. There are potentials for concentration of heavy metals in the fine-grained sediments (silt and clay) of the playa due to existence of Pb/Zn ore deposits, industrial and agricultural regions in the water catchment of Zayandehrud River terminating to this area. In order to study the concentration of heavy metals and the controlling factors on their distribution in the fine-grained sediments, 13 samples were taken from the muddy facies and concentration of the heavy metals were determined. The results showed that the heavy metal concentrations range in the sediments (in ppm) are Mn (395.5–1,040), Sr (100.4–725.76), Pb (14.66–91.06), Zn (23.59–80.9), Ni (37–73.66), Cu (13.83–29.83), Co (5.73–13.78), Ag (3.03–4.76) and Cd (2.3–5.5) in their order of abundances. The concentration of Ag is noticeable in the sediments relative to the average concentration of this element in mud sediments. The amounts of Pb and Zn are relatively high in all the samples in comparison with the other elements. The concentration of Ni is relatively high in the oxidized samples. The distribution of Pb is directly related to organic matter content of the sediments. The concentrations of Zn, Sr, Cu, Co and Cd in the samples of the playa are lower than those in the delta. The amount of illite is another factor influencing Zn and Pb concentrations. Sr is more concentrated in the sediments with the high content of calcium carbonate. The distribution pattern of Cu, Co, Pb and Mn resembles to that of the clay content of the sediments. The clay content shows positive correlations with Co, Cu and Mn concentrations and negative correlation with Ag. The Sr and Ag concentrations are positively correlated with the amount of CaCO3. The amounts of Co, Cu, Ni and Mn show negative correlations with the calcium carbonate content. Pb and Co are noticeably correlated with Mn.  相似文献   

17.
The objectives of the current study were to determine the chemical partitioning of Pb, Ni, Zn, Co, Cr, Mn, Fe and Cd using sequential extraction procedure and to assess the environmental risk associated with these metals in the farming soils along Zerqa River. Metal concentrations were measured by atomic absorption spectrophotometer. The study area demonstrated a wide range for pH, organic matter, carbonate contents, and cation exchange capacity, and is polluted with Pb, Cd, Mn, and Cu. The extensive use of fertilizers and pesticides in the agricultural activities, and discharge of treated and untreated wastewater are the major sources of pollution in the study area. Principal component analysis coupled with Pearson’s correlation analysis between the heavy metals revealed strong and positive correlation between these metals in the study area. According to the Risk Assessment Code (RAC), major portions of Cd and Mn are contained in exchangeable and carbonates fractions and therefore can easily enter the food chain. These metals pose a high to very high risk to the environment. Cu, Ni, Pb, and Zn pose medium risk, while Cr poses a low environment risk.  相似文献   

18.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

19.
Sequential core sediments from northwestern Taihu Lake in China were analyzed for grain size, organic carbon and heavy metal content. The sediments are composed of organic-poor clayey-fine silts. The chemical speciations of Cu, Fe, Mn, Ni, Pb, and Zn were also analyzed using the BCR sequential extraction procedure. Cu, Fe, Ni, and Zn are mainly associated with the residue fraction; Mn is concentrated mainly in exchangeable/carbonate fraction and residue fraction; and Pb mainly in Fe/Mn oxide fraction and organic/sulfide fraction. The exchangeable/carbonate fractions of Cu, Fe, Ni, Zn and Pb are lower. The fractions of Ni, Pb and Zn bound to the Fe/Mn oxide have significant correlations with reducible Mn; the organic/sulfide fractions of Cu, Mn, Ni, Pb, and Zn have significant correlations with TOC. The extractable fractions of Cu, Mn, Ni, Pb, and Zn are high at the top 4 cm of the core sediments as compared to those in the deeper layers, showing the anthropogenic input of heavy metals is due to rapid industrial development. The heavy metal pollution history of the sediments has been recorded since the late 1970s, determined by the result of ^137Cs dating.  相似文献   

20.
Surface sediments of nine islands of Lakshadweep were evaluated for their heavy metal concentration (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Sediments of thirteen seagrass and seven non seagrass sites were collected randomly and analysed for heavy metal concentration using Inductively Coupled Plasma Optical Emission Spectrometer. Heavy metals like Cu, Ni and Zn were found in higher concentrations in the seagrass sediments, whereas other heavy metals such as Cd, Co, Cr, Fe, Mn and Pb were higher in non seagrass sediments. Different pollution indices were calculated to evaluate contamination level of all heavy metals in the sediments. Cadmium recorded higher contamination factor (1.733–21.067), enrichment factor (276.10–12,270) and Geo-accumulation Index (0.208–3.811) both in seagrass and nonseagrass sediments. Multivariate statistical analysis such as principal component analysis and cluster analysis coupled together with correlation co-efficient was used to identify the possible sources of heavy metal pollution in the region. Average concentrations of Cd in Lakshadweep islands were slightly higher than effective range, low but still below effective range medium. All other metals were still below these ranges indicating fairly uncontaminated sediment in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号