首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-situ cosmogenic 36Cl production rates from spallation of Ca and K determined in several previously published calibration studies differ by up to 50%. In this study we compare whole rock 36Cl exposure ages with 36Cl exposure ages evaluated in Ca-rich plagioclase in the same 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). The exposure age of the sample was determined by K–Ar and corroborated by cosmogenic 3He measurements on cogenetic pyroxene phenocrysts. Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be reduced from 450 ppm to less than 3 ppm after 16% dissolution. 36Cl exposure ages calculated from the successive dissolution steps of this leached plagioclase sample are in good agreement with K–Ar and 3He age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages derived are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric 36Cl as an explanation for this overestimate. Magmatic 36Cl was estimated by measuring a totally shielded sample, but was found to account for only an insignificant amount of 36Cl in the case of the 10 ka whole rock sample. We suspect that the overestimate of the whole rock exposure age is due to the difficulty in accurately assessing all the factors which control production of 36Cl by low-energy neutron capture on 35Cl, particularly variable water content and variable snow cover. We conclude that some of the published 36Cl spallation production rates might be overestimated due to high Cl concentrations in the calibration samples. The use of rigorously pretreated mineral separates reduces Cl concentrations, allowing better estimates of the spallation production rates.In the Appendix of this paper we document in detail the equations used. These equations are also incorporated into a 36Cl calculation spreadsheet made available in the supplementary data.  相似文献   

2.
The Huancané II moraines deposited by the Quelccaya Ice Cap in southern Peru were selected by the CRONUS-Earth Project as a primary site for evaluating cosmogenic-nuclide scaling methods and for calibrating production rates. The CRONUS-Earth Project is an effort to improve the state of the art for applications of cosmogenic nuclides to earth-surface chronology and processes. The Huancané II moraines are situated in the southern Peruvian Andes at about 4850 m and ∼13.9°S, 70.9°W. They are favorable for cosmogenic-nuclide calibration because of their low-latitude and high-elevation setting, because their age is very well constrained to 12.3 ± 0.1 ka by 34 radiocarbon ages on peat bracketing the moraines, and because boulder coverage by snow or soil is thought to be very unlikely. However, boulder-surface erosion by granular disintegration is observed and a ∼4% correction was applied to measured concentrations to compensate. Samples from 10 boulders were analyzed for 10Be, 26Al, and 36Cl. Interlaboratory bias at the ∼5% level was the largest contributor to variability of the 10Be samples, which were prepared by three laboratories (the other two nuclides were only prepared by one laboratory). Other than this issue, variability for all three nuclides was very low, with standard deviations of the analyses only slightly larger than the analytical uncertainties. The site production rates (corrected for topographic shielding, erosion, and radionuclide decay) at the mean site elevation of 4857 m were 45.5 ± 1.6 atoms 10Be (g quartz)−1 yr−1, 303 ± 15 atoms 26Al (g quartz)−1 yr−1, and 1690 ± 100 atoms 36Cl (g K)−1 yr−1. The nuclide data from this site, along with data from other primary sites, were used to calibrate the production rates of these three nuclides using seven global scaling methods. The traditional Lal formulation and the new Lifton-Sato-Dunai calibrations yield average ages for the Huancané samples that are in excellent-to-good agreement with the radiocarbon age control (within 0.7% for 10Be and 36Cl and 6% for 26Al). However, all of the neutron-monitor-based methods yielded ages that were too young by about 20%. The nuclide production ratios at this site are 6.74 ± 0.34 for 26Al/10Be in quartz and 37.8 ± 2.3 (atoms 36Cl (g K)−1) (atom 10Be (g SiO2)−1)−1 for 36Cl/10Be, in sanidine and quartz, respectively.  相似文献   

3.
For efficient combustion of aquatic biomass, the effects of heating rate on the combustion and dynamic characteristics of two typical aquatic species (water hyacinth, Pistia stratiotes), and the effects of temperature and additives on ash K and Cl concentrations are studied. The two types of pellets have ignition temperatures of 252.7 and 250.3 °C, respectively. At a heating rate of 10 °C min−1, where combustion is most stable, the comprehensive combustion efficiencies reach their maximum at 4.7 × 10−6 and 2.2 × 10−6 mg2min−1°C−2, respectively. The K and Cl concentrations in the ash decrease steadily with increasing temperature, falling to 10.3% and 0.41% for water hyacinth and 11.1% and 1.85% for P. stratiotes, respectively. X-ray diffraction (XRD)shows that abundant Ca minerals form in the ash after the addition of CaO, which inhibit KCl formation, and K and Al silicates form in the ash after the addition of kaoline, which reserve K in the ash. These findings provide a starting point for the development of efficient aquatic biomass combustion.  相似文献   

4.
We have measured 36Cl in three rock surfaces of the Yenicekale building complex in Hattusha (Bo?azköy, Turkey). Hattusha was the capital of Hittite Empire which lasted from about 1650/1600 to 1200 BC. At Yenicekale, Hittite masons flattened the summit of an outcropping limestone knoll to form an artificial platform as the foundation for a building. Next they built a circuit wall along the lateral precipices of the flattened bedrock platform. We took one sample from the limestone bedrock platform and two samples from limestone building blocks of the circuit wall for cosmogenic 36Cl analysis. Calculated exposure ages are 20 ± 1 ka for the sample from the bedrock platform and 24 ± 1 ka and 52 ± 2 ka for the circuit wall blocks. These exposure ages are significantly older than the age expected based on the estimated time of construction between 3.2 ka and 3.7 ka. We conclude that the sampled surfaces contain significant inherited cosmogenic 36Cl. We cannot directly determine exposure ages for the building complex based on these three samples. On the other hand we may use the measured concentrations to determine how much of the rock was removed from the platform during flattening. To this end we modeled the variation of 36Cl production with depth at Yenicekale using the results from the bedrock sample. We conclude that the Hittite masons removed only around 3 m from top of the limestone block. This means that the volume of rock removed from the bedrock platform is significantly less than the volume in the circuit wall atop the platform. They did not gain enough rock from this flattening to make the building. In agreement with this, the first results of our detailed microfacies analysis indicate that many of the building blocks are not of the same facies as the underlying limestone and must have been quarried elsewhere. Although we were not able to exposure date the Yenicekale complex due to the presence of inherited 36Cl, our data suggest that Hittite masons excavated (most of) the building stones not at Yenicekale, but in quarries outside of Hattusha and then transported them to the construction site. These quarries have not yet been identified.  相似文献   

5.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

6.
This study utilizes a combined stable isotope and 14C dating approach to determine the radiocarbon reservoir age correction, ΔR, for the James River, Virginia estuary from 17th century Crassostrea virginica shells of known collection dates. ΔR, which can vary spatially and temporally, is a locality-specific adjustment applied to the global ocean reservoir, R, to further account for the offset between the atmospheric and marine 14C calibration curves. To assess the temporal variability in ΔR, continuous δ18O sampling along the oyster shell hinge provides a seasonal record throughout the oyster's life. This is then used to identify sampling locations for 14C measurements based on calcite precipitated during the Summer (>19 °C) and Fall through Spring (F-Sp, <15 °C) months. The resulting seasonal ΔR values range from −151 ± 46 to +109 ± 55 14C years (260 years) due to changes in the contribution and age of dissolved inorganic carbon (DIC) from marine and freshwater sources in the James River estuary. The F-Sp samples display a larger ΔR range than the Summer samples, as do the shells precipitated during drought conditions (1606–1612) when compared to shells from the remainder of the 17th century. The largest intrashell ΔR variability, 195 14C years, is similarly found in a drought shell and is attributed to variability caused by the extreme regional 1606–1612 drought. Early land use changes related to European development and farming practices also altered the age of DIC in the James River estuary. We estimate that the soil inorganic carbon (SIC) contributing to freshwater DIC ranged from 0 to ∼1800 years old and reflected both the drought and land use changes that occurred during the 17th century. Using only the Summer samples, which represent the majority of shell calcite, we obtain a mean ΔR = −32 ± 11 14C years (1σ) for 17th century James River estuary ΔR at the very onset of European colonization. Employing a seasonally resolved sampling method will provide the greatest constraint on 14C measurements in an estuarine environment where multiple carbon sources can fluctuate on seasonal timescales and as a result of large scale environmental change.  相似文献   

7.
An important constraint on the reliability of cosmogenic nuclide exposure dating is the rigorous determination of production rates. We present a new dataset for 10Be production rate calibration from Mount Billingen, southern Sweden, the site of the final drainage of the Baltic Ice Lake, an event dated to 11,620 ± 100 cal yr BP. Five samples of flood-scoured bedrock surfaces (58.5°N, 13.7°E, 105–120 m a.s.l.) unambiguously connected to the drainage event yield a reference 10Be production rate of 4.19 ± 0.20 atoms g−1 yr−1 for the CRONUS-Earth online calculator Lm scaling and 4.02 ± 0.18 atoms g−1 yr−1 for the nuclide specific LSDn scaling. We also recalibrate the reference 10Be production rates for four sites in Norway and combine three of these with the Billingen results to derive a tightly clustered Scandinavian reference 10Be production rate of 4.13 ± 0.11 atoms g−1 yr−1 for the CRONUS Lm scaling and 3.95 ± 0.10 atoms g−1 yr−1 for the LSDn scaling scheme.  相似文献   

8.
Despite their significance for estimating hazards and forecasting future activity, dating young volcanic deposits and landforms (<50,000 yrs old) remains a challenge due to the limitations inherent to the different isotopic chronometers used. The Trans-Mexican Volcanic Belt is one of the most active and populated continental arcs worldwide, yet its temporal pattern of activity is poorly constrained. Such deficiency is particularly problematic for the Sierra Chichinautzin Volcanic Field (SCVF) that is located at the doorstep of Mexico City and Cuernavaca and is hence a major source of risk for these cities. Existing ages for this area derive mostly from either radiocarbon on charcoal, which is rare and may be contaminated, or 40Ar/39Ar on rock matrix, which is poorly precise for this time period and rock type. Here, we focus on the Pelado monogenetic volcano, which is located in the central part of the SCVF and erupted both explosively and effusively, producing a large lava shield and a widespread tephra blanket. This unique eruptive event was previously dated at ∼12 calibrated (cal) kyrs BP, using radiocarbon dating on charcoal from deposits related to the eruption. To test alternative dating approaches and confirm the age of this significant eruption, we applied two less conventional techniques, radiocarbon dating of bulk paleosol samples collected below the complete tephra sequence at nine sites around the shield, and in-situ 36Cl exposure dating of two samples of an aphyric lava from the base of the shield. Radiocarbon paleosol ages span a continuous time interval from 13.2 to 20.2 cal kyrs BP (2σ), except for one anomalously young sample. This wide age spread, along with the low organic contents of the paleosols, may be due to erosive conditions, related to the sloping topography of the sampling sites and the cool and relatively dry climate of the Younger Dryas (11.7–12.9 ka), during which the Pelado eruption probably occurred. The two 36Cl-dated lava samples have consistent ages at 1σ analytical errors of 15.5 ± 1.4 ka and 13.2 ± 1.2 ka, respectively, yielding an average age of 14.3 ± 1.6 ka for this lava flow. The high full uncertainty in 36Cl ages (24%) is due to high rock Cl content. We conclude that paleosol radiocarbon dating is useful if numerous samples are analyzed and climatic and relief conditions at the time of the eruption and at the sites of tephra deposition are considered. The 36Cl dating technique is an alternative method to date volcanic eruptions, as it gave consistent results, but in the specific case of Pelado volcano, the high Cl content in the analyzed rocks increases the age uncertainties.  相似文献   

9.
Based on cosmogenic 10Be and 26Al analyses in 15 individual detrital quartz pebbles (16–21 mm) and cosmogenic 10Be in amalgamated medium sand (0.25–0.50 mm), all collected from the outlet of the upper Gaub River catchment in Namibia, quartz pebbles yield a substantially lower average denudation rate than those yielded by the amalgamated sand sample. 10Be and 26Al concentrations in the 15 individual pebbles span nearly two orders of magnitude (0.22 ± 0.01 to 20.74 ± 0.52 × 106 10Be atoms g−1 and 1.35 ± 0.09 to 72.76 ± 2.04 × 106 26Al atoms g−1, respectively) and yield average denudation rates of ∼0.7 m Myr−1 (10Be) and ∼0.9 m Myr−1 (26Al). In contrast, the amalgamated sand yields an average 10Be concentration of 0.77 ± 0.03 × 106 atoms g−1, and an associated mean denudation rate of 9.6 ± 1.1 m Myr−1, an order of magnitude greater than the rates obtained for the amalgamated pebbles. The inconsistency between the 10Be and 26Al in the pebbles and the 10Be in the amalgamated sand is likely due to the combined effect of differential sediment sourcing and longer sediment transport times for the pebbles compared to the sand-sized grains. The amalgamated sands leaving the catchment are an aggregate of grains originating from all quartz-bearing rocks in all parts of the catchment. Thus, the cosmogenic nuclide inventories of these sands record the overall average lowering rate of the landscape. The pebbles originate from quartz vein outcrops throughout the catchment, and the episodic erosion of the latter means that the pebbles will have higher nuclide inventories than the surrounding bedrock and soil, and therefore also higher than the amalgamated sand grains. The order-of-magnitude grain size bias observed in the Gaub has important implications for using cosmogenic nuclide abundances in depositional surfaces because in arid environments, akin to our study catchment, pebble-sized clasts yield substantially underestimated palaeo-denudation rates. Our results highlight the importance of carefully considering geomorphology and grain size when interpreting cosmogenic nuclide data in depositional surfaces.  相似文献   

10.
Well-dated records of tropical glacier fluctuations are essential for developing hypotheses and testing proposed mechanisms for past climate changes. Since organic material for radiocarbon dating is typically scarce in low-latitude, high-altitude environments, surface exposure-age dating, based on the measurement of in situ produced cosmogenic nuclides, provides much of the chronologic information on tropical glacier moraines. Here, we present a locally calibrated 10Be production rate for a low-latitude, high-altitude site near Quelccaya Ice Cap (∼13.95°S, 70.89°W, 4857 m asl) in the southeastern Peruvian Andes. Using an independent age (12.35 +0.2, −0.02 ka) of the late glacial Huancané IIa moraines based on thirty-four bracketing radiocarbon ages and twelve 10Be concentrations of boulders on the moraines, we determine a local production rate of 43.28 ± 2.69 atoms gram−1 year−1 (at g−1 yr−1). Reference 10Be production rates (i.e., production rates by neutron spallation appropriate for sea-level, high-latitude sites) range from 3.97 ± 0.09 to 3.78 ± 0.09 at g−1 yr−1, determined using scaling after Lal (1991) and Stone (2000) and depending on our assumed boulder surface erosion rate. Since our boulder surface erosion rate estimate is a minimum value, these reference production rates are also minimum values. A secondary control site on the Huancané IIIb moraines suggests that the 10Be production rates are at least as low as, or possibly lower than, those derived from the Huancané IIa moraines. These sea-level, high-latitude production rates are at least 11–15% lower than values derived using the traditional global calibration dataset, and they are also lower than those derived from the late glacial Breque moraine in the Cordillera Blanca of Peru. However, our sea-level, high-latitude production rates agree well with recently published, locally calibrated production rates from the Arctic, New Zealand, and Patagonia. The production rates presented here should be used to calculate 10Be exposure ages in low-latitude, high-altitude locations, particularly in the tropical Andes, and should improve the ability to compare the results of studies using 10Be exposure-age dating with other chronological data.  相似文献   

11.
《Continental Shelf Research》1999,19(15-16):2041-2061
Three sampling cruises were conducted in the Seine Estuary from 1993 to 1995 in varying hydrological and seasonal conditions. The site included all of the lower part of the river under the influence of tidal dynamics and the dilution plume in the Baie de Seine. Chemical speciation of arsenic showed high seasonal variations, especially in September when AsIII represented around 50% of dissolved arsenic. The inclusion of organoarsenic compounds not accessible to direct analysis by hydride generation required preliminary mineralisation of the samples. The ratio of dissolved to particulate arsenic distribution was controlled mainly by the iron content of particles. Biological activity had an influence on chemical speciation and thus on the partition coefficient (KD 10−3=6±1 in September and 12±0.9 in February). The zone of conservative mixing used for Seine River flow calculations was limited to a salinity range of approximately 10–30. Dissolved arsenic concentrations extrapolated to null salinities were lower during the high-water period because of dilution (17.6±1.1 nM), and maximal during the low-water period in summer (35.7±0.9 nM). Mean arsenic export to the English Channel was estimated at 33.2±6 T yr−1 for dissolved arsenic. Observation of an arsenic output greater than the upstream input, as well as a simultaneous increase in dissolved and particulate arsenic concentrations during the mixing of freshwater with seawater, strongly suggested the existence of an important intra-estuarine source of arsenic, either of industrial origin or related to the transport and diagenesis of marine sediments.  相似文献   

12.
We report observations of seasonal and local time variation of the averaged electron and iron concentrations, as well as simultaneous measurements of the two species, above the Arecibo Observatory (18.35°N, 66.75°N), Puerto Rico. The average Fe profile between 21:00 and 24:00 LT has a single peak at about 85 km with the exception of the summer when an additional peak exists at about 95 km. The higher Fe peak in the summer is correlated with higher electron concentrations in this season. The three nights of simultaneous measurements of electron and iron concentrations show that narrow layers of Fe and electrons are well correlated. Comparison of the climatological and simultaneous Fe and electron data suggests that recombination of Fe+ plays an important role in determining the Fe profile in the upper part of the Fe layer. Above 93 km, the Fe concentration appears to increase after sunset if the electron concentration exceeds about 4000 electrons cm−3. The average rate of Fe production is about 0.1 atom cm−3 s−1 for all seasons at 100 km in the early evening hours. A chemical model reveals that the concentration of Fe+ must be 50–80% of the total ionization over Arecibo for typical equinox conditions to explain the observed rate of Fe production. These high relative Fe+ concentrations are consistent with in situ observations that Fe+ is usually the dominant ion in sporadic E layers in the nighttime lower E region. This suggests that the source of Fe+ is provided by sporadic E layers descending over Arecibo after sunset. The Fe density between 80 and 85 km decreases during the night, for all seasons. This is attributed to the formation of stable molecular Fe species, such as FeOH, due to the increase in O3 and decrease in atomic O and H during the night at these altitudes.  相似文献   

13.
We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We have evaluated all parameters for the calculation of cosmogenic 36Cl production rates and thus surface exposure ages in dolomite and limestone. We found that we can use either of both published negative muon stopping rates until more information is available. The largest uncertainty of the age estimation in the upper meter of rock comes from the 36Cl production rate from Ca spallation and, in the case of 50–100 ppm Cl content, from the production rate of epithermal neutrons, which we estimate at 760 ± 150 neutrons/g_air/yr (1σ). For a sample with representative amounts of Ca and Cl (20 wt% Ca and 50 ppm Cl, or 40 wt% Ca and 100 ppm Cl), the age can be calculated with a precision of 7–10% in the top 1.5 m of the depth profile. Further improvement of 36Cl calculations depends on new calibration of 36Cl production from Ca spallation, re-evaluation of 36Cl production by low-energy neutron capture on 35Cl, as well as of the muon flux and muon capture based on the most recent measurement data.  相似文献   

15.
The meteoric input of36Cl due to cosmogenic or nuclear-weapon-produced36Cl cannot contribute significantly to the36Cl present in the saline groundwaters (up to 700 mg l−1 Cl) from the Stripa granite. The extent of in-situ production of36Cl has been estimated on the basis of the neutron fluxes within the granite and its surrounding leptite. The36Cl present in the groundwaters is attributed to either admixture of labelled Cl from the leptite with Cl from the granite or to the total derivation of groundwater chlorinity within the leptite followed by radiochemical ingrowth of36Cl during subsequent groundwater residence within the granite. The chloride derived from the leptite may be either matrix chloride or chloride from an external source which has had a long residence time within the leptite. The implications of36Cl in-situ production for the estimation of groundwater residence times and for the geochemical evolution of groundwater chlorinity are discussed.  相似文献   

16.
This paper highlights potential complications that may arise while using in situ produced 10Be to date exposure or burial events using diagenetic silica (chert). The initiation and evolution of large gravitational collapses in sedimentary rocks were constrained using cosmic ray exposure dating. Because these collapses occurred in a stratigraphic level composed of chert (diagenetic silica) concretions interbedded in limestone layers, their development was studied by performing in situ-produced 36Cl and 10Be concentration measurements in both the limestone and coexisting diagenetic silica (chert), respectively. Following the routinely used decontamination and preparation protocols for 10Be produced in diagenetic silica, large discrepancies were observed with exposure ages determined by 36Cl within carbonate for samples originating from the same scarp. While 36Cl exposure ages were clustered as expected for a unique single gravitational event, 10Be exposure ages were scattered along the same studied scarps. To determine the origin of such a bias, petrological investigations were carried out for chert (diagenetic silica). Thin sections highlighted a complex mineralogical texture characterized by remnant silicified ooids showing calcitic cores, calcite inclusions and a dominant amorphous hydrated silica (grain > 20 μm). To decipher and characterize the potential origins of the excess measured 10Be within diagenetic silica, all samples were first reprocessed following the routine decontamination protocol (HCL–H2SiF6 leachings and three partial HF dissolutions) but starting from three different grain size fractions (GS1: 1000–500, GS2: 500–250 and GS3: 250–50 μm). The resulting concentrations clearly showed a decreasing 10Be content as a function of the grain size, but still yielded 10Be exposure ages significantly higher than 36Cl counterparts. Because potential adsorption of 10Be at the surface of amorphous silica grains was suspected, partial dissolution steps following by a leaching step in hydroxylamine were investigated. Finally, it seems that an additional leaching in KOH allowed removal of the amorphous silica phase and the measured 10Be concentrations yielded 10Be exposure ages agreeing within uncertainties with the 36Cl ones. This work suggests that measuring in situ produced 10Be within chert (amongst other types of diagenetic silica, e.g. flint, hornstone, jasper, etc.) containing amorphous silica requires caution.  相似文献   

17.
The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in saline lake Namuka Co, northern Tibet, China. The sampling was carried out at approximately monthly intervals from June 2001 to July 2002. The salinity ranged from 5.5 to 26 g/L. The mean annual air and water temperature showed a clear seasonal pattern, which was approximately 4.4 and 7.4°C, respectively, with the lowest water temperature in winter (from December to March, −1°C) and the highest in June and July (18°C). The results showed that 36 taxa of phytoplankton and 16 taxa of zooplankton were identified. Both the biomass and abundance of total phytoplankton were lower in the winter and peaked once or twice during the summer and spring in the early August (8.23 mg/L and 158.2 × 106 ind./L). The seasonal variation in total zooplankton biomass and abundance was characterized by lower values in both winter and early spring, and one maximum (90.5 mg/L and 935 ind. L−1) occurred in the late summer. Major phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Ulothrix sp., and Spirogyra sp. And major zooplankton species included Vorticella campanula, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, Arctodiaptomus stewartianus. The production of D. tibetana was 420.3 g m3 a−1. The total number of plankton species has a significant negative correlation with the salinity.  相似文献   

18.
This study reports an inter-laboratory comparison of the 3He and 4He concentrations measured in the pyroxene material CRONUS-P. This forms part of the CRONUS-Earth and CRONUS-EU programs, which also produced a series of natural reference materials for in situ produced 26Al, 10Be, 14C, 21Ne and 36Cl.Six laboratories (GFZ Potsdam, Caltech Pasadena, CRPG Nancy, SUERC Glasgow, BGC Berkeley, Lamont New York) participated in this intercomparison experiment, analyzing between 5 and 22 aliquots each. Intra-laboratory results yield 3He concentrations that are consistent with the reported analytical uncertainties, which suggests that 3He is homogeneous within CRONUS-P. The inter-laboratory dataset (66 determinations from the 6 different labs) is characterized by a global weighted mean of (5.02 ± 0.12) × 109 at g−1 with an overdispersion of 5.6% (2σ). 4He is characterized by a larger variability than 3He, and by an inter-lab global weighted mean of (3.60 ± 0.18) × 1013 at g−1 (2σ) with an overdispersion of 10.4% (2σ).There are, however, some systematic differences between the six laboratories. More precisely, 2 laboratories obtained mean 3He concentrations that are about 6% higher than the clustered other 4 laboratories. This systematic bias is larger than the analytical uncertainty and not related to the CRONUS-P material (see Schaefer et al., 2015). Reasons for these inter-laboratory offsets are difficult to identify but are discussed below. To improve the precision of cosmogenic 3He dating, we suggest that future studies presenting cosmogenic 3He results also report the 3He concentration measured in the CRONUS-P material in the lab(s) used in a given study.  相似文献   

19.
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt-gamma (neutron) activation analysis (PGAA). The second method is isotope-dilution based on isotopically enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty-six (26) whole rock samples have been processed for PGAA and ID-AMS analysis. This study constitutes the first published inter-comparison for concentrations below 100 μgCl/g. Our results show no significant difference in Cl concentrations between methods. This agreement indicates good retention of chloride during the procedure we employ for whole rock sample dissolution. No significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibrium is reached, prior to AgCl precipitation. Uncertainties, which are <5% for both methods, affect the uncertainty of the total 36Cl production rate less than 2% for our samples.The Cl concentration measured by PGAA can be used to calculate the amount of isotopically enriched spike for AMS-ID sample preparation with the aim to optimize 36Cl analysis. Furthermore, PGAA offers an advance for the interpretation of 36Cl measurements. It allows measurement of concentrations of major, minor and trace elements including the elements for 36Cl production (Cl, K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Sm and Gd). These measurements are performed simultaneously and with a precision necessary for calculating the relative contributions to 36Cl production from the different mechanisms.  相似文献   

20.
Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g−1 compared with 23.8 mg g−1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20–45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm−3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号