首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The possibility of quantifying surface processes in mafic or volcanic environment using the potentialities offered by the in situ-produced cosmogenic nuclides, and more specifically by the in situ-produced 10Be, is often hampered by the rarity of quartz minerals in the available lithologies. As an alternative to overcome this difficulty, we explore in this work the possibility of relying on feldspar minerals rather that on quartz to perform in situ-produced 10Be measurements in such environments. Our strategy was to cross-calibrate the total production rate of 10Be in feldspar (P10fsp) against the total production rate of 3He in pyroxene (P3px) by measuring 3He and 10Be in cogenetic pyroxene (3Hepx) and feldspar (10Befsp). The samples were collected from eight ignimbritic boulders, exposed from ca 120 to 600 ka at elevations ranging from 800 to 2500 m, along the preserved rock-avalanche deposits of the giant Caquilluco landslide (18°S, 70°W), Southern Peru. Along with data recently published by Blard et al. (2013a) at a close latitude (22°S) but higher elevation (ca. 4000 m), the samples yield a remarkably tight cluster of 3Hepx - 10Befsp total production ratios whose weighted-mean is 35.6 ± 0.5 (1σ). The obtained weighted-mean 3Hepx - 10Befsp total production ratio combined with the local 3Hepy total production rate in the high tropical Andes published by Martin et al. (2017) allows to establish a total SLHL 10Be in situ-production rate in feldspar mineral (P10fsp) of 3.57 ± 0.21 at.g−1.yr−1 (scaled for the LSD scaling scheme, the ERA40 atm model and the VDM of Lifton, 2016).Despite the large elevation range covered by the whole dataset (800–4300 m), no significant variation of the 3Hepx - 10Befsp total production ratios in pyroxene and feldspar was evidenced. As an attempt to investigate the effect of the chemical composition of feldspar on the total 10Be production rate, major and trace element concentrations of the studied feldspar samples were analyzed. Unfortunately, giving the low compositional variability of our dataset, this issue is still pending.  相似文献   

2.
Reference materials are key for assessing inter-laboratory variability and measurement quality, and for placing analytical uncertainty bounds on sample analyses. Here, we investigate four years of data resulting from repeated processing of the CRONUS-N reference material for cosmogenic 10Be and 26Al analyses. At University of Vermont, we prepared a CRONUS-N aliquot with most of our sample batches from 2013 to 2017; these reference material samples were then distributed to four different accelerator mass spectrometry facilities, yielding 73 10Be analyses and 58 26Al analyses. We determine CRONUS-N 10Be concentrations of (2.26 ± 0.14) x 105 atoms g−1 (n = 73, mean, 1 SD) and 26Al concentrations of (1.00 ± 0.08) x 106 atoms g−1 (n = 58, mean, 1 SD). We find a reproducibility of 6.3% for 10Be and 7.7% for 26Al (relative standard deviations). We also document highly variable 27Al and Mg concentrations and a 10Be dispersion twice as large as the mean AMS analytic uncertainty. Analyses of the CRONUS-N material with and without density separation demonstrate that non-quartz minerals are present in the material and have a large impact on measured concentrations of 27Al, 10Be, and impurities; these non-quartz minerals represent only a very small portion of the total mass (0.6–0.8%) but have a disproportionally large effect on the resulting data. Our results highlight the importance of completely removing all non-quartz mineral phases from samples prior to Be/Al extraction for the determination of in situ cosmogenic 10Be and 26Al concentrations.  相似文献   

3.
A sequential chemical extraction procedure was developed and tested to investigate the utility of meteoric 10Be as a tracer for authigenic mineral formation beneath the East Antarctic Ice Sheet. Subglacial meltwater is widely available under the Antarctic Ice Sheet and dissolved gases within it have the potential to drive chemical weathering processes in the subglacial environment. Meteoric 10Be is a cosmogenic nuclide with a half-life of 1.39·106 years that is incorporated into glacier ice, therefore its abundance in the subglacial environment in Antarctica is meltwater dependent. It is known to adsorb to fine-grained particles in aqueous solution, precipitate with amorphous oxides/hydroxides, and/or be incorporated into authigenic clay minerals during chemical weathering. The presence of 10Be in chemical weathering products derived from beneath the ice therefore indicates chemical weathering processes in the subglacial environment. Freshly emerging subglacial sediments from the Mt. Achernar blue ice moraine were subject to chemical extractions where these weathering phases were isolated and 10Be concentrations therein quantified. Optimization of the phase isolation was developed by examining the effects of each extraction on the sample mineralogy and chemical composition. Experiments on 10Be desorption revealed that pH 3.2–3.5 was optimal for the extraction of adsorbed 10Be. Vigorous disaggregation of the samples before grain size separations and acid extractions is crucial due to the incorporation of the nuclide in clay minerals and its preferential absorption to clay-sized particles. 10Be concentrations of 2–22·107 atoms·g−1 measured in oxides and clay minerals in freshly emerging sediments strongly indicate subglacial chemical weathering in the catchment of the Mt. Achernar moraine. Based on total 10Be sample concentrations, local basal melt rates, and 10Be ice concentrations, sediment-meltwater contact in the subglacial environment is on the order of thousands of years per gram of underlying fine sediment. Strong correlation (R = 0.97) between 10Be and smectite abundance in the sediments supports authigenic clay formation in the subglacial environment. This suggests meteoric 10Be is a useful tool to characterize subglacial geochemical weathering processes under the Antarctic Ice Sheet.  相似文献   

4.
Quartz is a preferred mineral which is widely used for optically stimulated luminescence (OSL) and cosmogenic radionuclide (CRN) dating methods. Any contamination in the sample may mislead and result in erroneous results for both the dating methods (e.g. OSL or CRN). Therefore it is essential to get pure quartz before the measurements of OSL and CRN. Presence of other minerals can introduce unaccounted luminescence signal in the case of OSL, similarly in the case of CRN unaccounted concentration of 10Be and 26Al may be introduced. Therefore, in order to get reliable ages from CRN and OSL, extraction of pure quartz from the sediment becomes necessary. Protocols have been developed to extract pure quartz from the sediment, e.g., the separation of quartz from feldspar and other heavy minerals can be achieved by applying 2-step density separation. This is followed by HF leaching which usually removes the feldspar contamination from the quartz (if any left). However, in some cases, this method is not successful, especially in the case of feldspar rich samples or in the samples with intergrowth of feldspar in quartz crystals. This paper reports a method that is effective in separating quartz and feldspar. A small amount of fine grained iron powder was used to make feldspar as magnetic mineral and it is separated from quartz using isodynamic magnetic separator effectively. Efficacy of the method was tested with different analytical instruments such as scanning electron microscope (SEM), OSL/TL reader and inductively coupled plasma mass spectromete (ICP-MS). The analytical tests showed that the proposed method eliminates feldspar by ~95%.  相似文献   

5.
As part of the NSF-funded program CRONUS-Earth, a series of natural reference materials for in situ produced 26Al, 10Be, 14C, and 36Cl were prepared and circulated to United States, Australian, and European laboratories for analysis to explore the comparability of results from the different laboratories and generate preliminary consensus values for a range of reference material. Such reference materials, which did not exist for these isotopes, assist laboratories in independently assessing quality and are useful to quantify precision and accuracy. Currently, most researchers report only internal analytical uncertainties for all results. While researchers have acknowledged the need for realistic inter-laboratory uncertainties for in situ produced cosmogenic isotopes, few previous studies have addressed this issue. Two samples (denoted A and N) were provided for 26Al, 10Be and in situ 14C analysis, one from the Antarctic, high in 26Al and 10Be and the other from Australia, lower in both 26Al and 10Be. Both samples were prepared to quartz at the University of Vermont. For each sample, results have been summarised in terms of the mean reported concentration, standard deviation both between (inter) and within (intra) laboratories to describe inter- and intra-laboratory variability. Coefficients of variation (CoV) expressed as a percentage of the mean are also reported. For in-situ 14C, a small number of laboratories reported results, so they are summarised separately. Initial uncorrected results for 10Be for samples A and N showed significant variation (greater than 8% CoV) in results. When corrected to a common standardisation basis, the CoV was 2.9% for 10Be measurements of sample A (high concentration) and to 4.1% for sample N (lower concentration), which is closer to typical cosmogenic samples. 26Al measurements had greater variation; a CoV of 4.9% was achieved for sample A (high concentration) but for the lower concentration sample N, the CoV was 10.1%.  相似文献   

6.
Concentrations of in situ-produced cosmogenic 10Be (T1/2=1.5 Myr) were measured in quartz samples from a quartz vein and its connected stone line from the Jardim River basin, Distrito Federal, Brazil, in order to quantify the processes involved in the landscape evolution of that region. The exponential decrease of the 10Be concentrations along the quartz vein, as well as their systematic increase along the stone-line away from the quartz vein, suggests an autochthonous development. Two models allow to estimate the lateral displacement rate. A plugs model assuming that the sample depth, and hence the production rate, is constant, and a burial model assuming that the sample depth, and hence the production rate, varies through time, yield lateral displacement rate of 37±5 and 68±6 m Myr−1, respectively.  相似文献   

7.
We present the new 14C extraction line at ETH Zürich. This system is designed to extract in situ-produced cosmogenic 14C from terrestrial quartz samples, and to obtain pure CO2 gas for analysis with a gas ion source Accelerator Mass Spectrometry (AMS) system. Samples are degassed at 1550–1600 °C without the use of a fluxing agent. Gas purification is achieved by a series of cryogenic traps and passage through hot Ag and Cu wool/mesh. Graphitization and, thus, sample dilution is not required. Tests to determine the CO2 recovery after gas extraction and cleaning yielded consistently good recovery rates of >99.8% (n = 7). The 14C blank contribution from the all-metal tubing system is negligible. Our preliminary procedural blank estimate – deriving mostly from the hot extraction furnace – is <5 × 105 14C atoms. Extraction tests on two quartz samples by stepped-heating show a quantitative separation of atmospheric 14C at ≤500 °C from the in situ component above 1200 °C. Based on these data, we estimate to achieve a complete 14C extraction from a quartz sample.  相似文献   

8.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

9.
Frequency-dependent magnetic susceptibility, its anisotropy (AMS), its temperature variation, natural remanent magnetization and time-dependent isothermal remanent magnetization as well as M?ssbauer spectroscopy of a small collection of Celtic and Mediaeval graphitic pottery from Southern Bohemia were investigated. The mineral composition of the pottery is dominated by fragments of quartz, accompanied mainly by various silicates from granitoids and paragneisses, or by calcite, within the plastic component being probably illite but also graphite. No ferrimagnetic minerals were found in optical microscope, among Fe-oxides only limonite was observed, even though the bulk susceptibility of the pottery varies in the orders of 10?4 to 10?2 [SI]. This may indicate presence of ferromagnetic particles in the ultrafine (superparamagnetic, SP) state, which is confirmed by frequency-dependent susceptibility ranging from 3% to almost 16%. The low temperature susceptibility vs. temperature curves are only moderately sloped, showing the Verwey transition only in one case. The high temperature curves mostly show presence of two magnetic phases, maghemite and magnetite. Cooling curves show distinctly lower susceptibilities than the heating curves indicating instability of the assemblage of ferrimagnetic minerals, particularly in temperatures slightly under 700 °C. M?ssbauer spectroscopy confirmed the results of the frequency-dependent susceptibility, showing the increase of ferrimagnetic sextets in the spectra measured at 4.2K, likely indicating maghemite as the distinct ferrimagnetic phase. The frequency-dependent AMS indicates preferred orientation of SP1,16 particles, coaxiality between SP1,16 grain AMS and whole specimen AMS indicate that all grains, ultrafine and coarser ones, were oriented by the same process, i.e. copying the pottery structure created during wheel-turning.  相似文献   

10.
原地宇宙成因核素测年方法在地质及地理研究领域应用广泛,测年对象众多。石英因其致密的晶体结构不易被大气成因10Be污染,以及较低的27Al含量的特点而成为宇宙成因核素测年方法中一种理想的测年物质。在分离石英样品10Be和26Al的实验流程中,石英的提纯是其中的一个关键环节。原始的HCl/H2O2和HF/HNO3蚀刻分离提纯石英方法应用广泛、安全可靠,但处理样品周期长、效率较低。因此,在原始流程的基础上,设计了3组实验流程与原始流程进行对比。结果显示,在样品石英纯度较高的基础上,可以通过减少超声波使用时间、增加蚀刻溶液浓度及每步样品处理量的方法,提高样品的处理效率,同时可以用加热磁力搅拌器替代超声波清洗器进行石英样品的HF/HNO3蚀刻提纯  相似文献   

11.
Cosmogenic exposure dating of moraines during the last two decades has vastly improved knowledge on the timing of glaciation worldwide. Due to a variety of geologic complications, such as moraine degradation, snow cover, bedrock erosion and isotopic inheritance, samples from multiple large boulders (>1–2 m) often lead to the most accurate moraine age assignments. However, in many cases, large boulders are not available on moraines of interest. Here, I test the suitability of pebble collections from moraine crest surfaces as a sample type for exposure dating. Twenty-two 10Be ages from two Pleistocene lateral moraine crests in Pine Creek valley in the upper Arkansas River basin, Colorado, were calculated from both pebble and boulder samples. Ten 10Be ages from a single-crested Bull Lake lateral moraine range between 3 and 72 ka, with no statistical difference between pebble (n = 5) and boulder (n = 5) ages. The lack of a cluster of 10Be ages suggests that moraine degradation has led to anomalously young exposure ages. Twelve 10Be ages from a single-crested Pinedale lateral moraine have a bimodal age distribution; one mode is 22.0 ± 1.4 ka (three boulders, two pebble collections), the other is 15.2 ± 0.9 ka (two boulders, five pebble collections). The interpretation of the two age modes is that two glacier maxima of similar extent were attained during the late Pleistocene. Regardless of moraine age interpretations, that 10Be ages from pebble collections and boulders are indistinguishable on moraines of two different ages, and in two different age modes of the Pinedale moraine, suggests that pebble collections from moraine crests may serve as a suitable sample type in some settings.  相似文献   

12.
Post-collapse rhyolite lava domes, lava flows and pyroclastic rocks from Valles caldera (1140 ka), erupted from 1133 ka to approximately 520-60 ka, have been sampled to study variations of light lithophile (Li, Be, B) and halogen (F, Cl) elements. Our principal objectives were: (1) to examine the mobility of these elements during post-eruptive devitrification and hydration; and (2) to study their behavior during magma differentiation. Compared to fresh glassy samples, devitrified rocks from the same dome are depleted in B, Li, F and Cl, but not in Be. During devitrification, Be was immobile while the other elements were progressively more mobile in the order B < Li < Cl < F, fluorine being the most mobile element. Considering only fresh glassy samples, Li, Be and B were enriched in residual liquids and behaved incompatibly during differentiation of successive magma batches at 973-787 ka and 557-521 ka. The rhyolites have low B/Be ratios of 2–3 which decrease slightly with increasing Be; these values suggest a small fractionation of B from Be during evolution of the magmas. While F behaves like the light lithophile elements, Cl shows (1) much smaller temporal enrichment during differentiation at 973-787 ka and (2) depletion with time from 557 to 521 ka. At the same time, the Cl/Be ratio declines progressively from ˜250 in the oldest rhyolites to ˜ 100 in the youngest rhyolites. These data suggest that (1) a magmatic fluid phase continuously extracted Cl from fluid-saturated magmas and (2) some of the magmatic Cl lost could have been incorporated into the Valles hydrothermal system.  相似文献   

13.
Based on cosmogenic 10Be and 26Al analyses in 15 individual detrital quartz pebbles (16–21 mm) and cosmogenic 10Be in amalgamated medium sand (0.25–0.50 mm), all collected from the outlet of the upper Gaub River catchment in Namibia, quartz pebbles yield a substantially lower average denudation rate than those yielded by the amalgamated sand sample. 10Be and 26Al concentrations in the 15 individual pebbles span nearly two orders of magnitude (0.22 ± 0.01 to 20.74 ± 0.52 × 106 10Be atoms g−1 and 1.35 ± 0.09 to 72.76 ± 2.04 × 106 26Al atoms g−1, respectively) and yield average denudation rates of ∼0.7 m Myr−1 (10Be) and ∼0.9 m Myr−1 (26Al). In contrast, the amalgamated sand yields an average 10Be concentration of 0.77 ± 0.03 × 106 atoms g−1, and an associated mean denudation rate of 9.6 ± 1.1 m Myr−1, an order of magnitude greater than the rates obtained for the amalgamated pebbles. The inconsistency between the 10Be and 26Al in the pebbles and the 10Be in the amalgamated sand is likely due to the combined effect of differential sediment sourcing and longer sediment transport times for the pebbles compared to the sand-sized grains. The amalgamated sands leaving the catchment are an aggregate of grains originating from all quartz-bearing rocks in all parts of the catchment. Thus, the cosmogenic nuclide inventories of these sands record the overall average lowering rate of the landscape. The pebbles originate from quartz vein outcrops throughout the catchment, and the episodic erosion of the latter means that the pebbles will have higher nuclide inventories than the surrounding bedrock and soil, and therefore also higher than the amalgamated sand grains. The order-of-magnitude grain size bias observed in the Gaub has important implications for using cosmogenic nuclide abundances in depositional surfaces because in arid environments, akin to our study catchment, pebble-sized clasts yield substantially underestimated palaeo-denudation rates. Our results highlight the importance of carefully considering geomorphology and grain size when interpreting cosmogenic nuclide data in depositional surfaces.  相似文献   

14.
Cosmogenic isotopes, short‐lived radionuclides, elemental concentrations and thermochronometric indicators are measured in river sand to quantify erosion rates and trace sediment sources, and/or infer erosional processes. Interpretations of detrital sediment analyses are often based on the rarely tested assumption of time‐invariant tracer concentration. A better understanding of when and where this assumption breaks down and what sampling strategies minimize temporal and small‐scale spatial variance will improve science done using detrital river sediment. Here, we present new and previously published spatial and temporal replicates measured for in situ and meteoric 10Be (10Bei and 10Bem, respectively). Our new data include 113 replicate pairs, taken from agricultural and/or tectonically active watersheds in China months to millennia apart and spatial replicates taken up to 2 km apart on the same day. The mean percentage difference is 10% (?122% to 150%) for both systems considered together; the mode is close to 0% for both systems; and 36% of pairs of samples replicate within our analytical accuracy at 2σ . We find that 10Bei replicates better than 10Bem (p < 0.01). 10Bei replicability is worse in steeper basins, suggesting that stochastic processes (i.e. landslides) affect reproducibility. 10Bem replicability is worse in larger basins, suggesting non‐conservative behavior of 10Bem as sediment moves downstream. Our results are consistent with the few previously published replicate studies. Considering all replicate data in a wide range of landscapes, in areas with deep erosional processes, replicability is poor; in other areas, replicability is good. This suggests that, in steep, tectonically active, and/or agricultural landscapes, individual detrital sediment measurements do not represent upstream rates as well as larger populations of samples. To ensure that measurements are representative of the upstream watershed, our data suggest that samples be amalgamated either over time or from several places close by in the same channel. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Simple, rapid, and sensitive spectrophotometric methods have been proposed for the determination of cationic surfactants (CS) as cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium (DTAB), and cetylpyridinium bromide (CPB). The methods are based on the effects of CSs on the complexes of Al3+ and Be2+ with Chrome Azurol S (CAS). The optimum reaction conditions such as CAS concentration, metal ion concentration, and pH have been studied and found to be 2.0 × 10?4 mol L?1 CAS, 0.5 mg L?1 Al3+ or 0.4 mg L?1 Be2+ and pH 5.4. The analytical characteristics of the methods such as limit of detections, limit of quantifications, and linear ranges have been obtained. CTAB, CPB, and DTAB could be determined by the Al–CAS complex in the ranges of 0.50–40.00, 0.20–10.00, and 0.40–10.00 µmol L?1, and for the Be–CAS complex in the ranges of 0.08–5.00, 0.08–3.00, and 0.20–6.00 µmol L?1, respectively. The limit of the detections of the method for the determination of CTAB, CPB, and DTAB for the Be–CAS complex has been found as 0.025, 0.024, and 0.061 µmol L?1, respectively. The interfering effect of some anions and cations was also tested. The method was applied to the determination of CS CTAB in conditioner shampoo and water samples.  相似文献   

16.
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.  相似文献   

17.
Age plateaux and isochrons in the 40Ar-39Ar and similar dating techniques can be severely altered by processes changing the geometric distribution of one isotope relative to the other. Age plateaux and isochrons can even be generated entirely as experimental artifacts. Alterations of 40Ar-39Ar plateau ages by recoil redistribution of 39Ar, incorporation of trapped 40Ar and prior 40Ar loss provide significant examples.10% shifts in isotopic ratios are very easily obtained and would result in errors in 40Ar-39Ar plateau ages of 4 AE old samples of ~100 m.y., which is comparable to the age differences which must be resolved to develop early lunar and solar system chronology. The possible occurrence of diffusion artifacts must be evaluated in every case to establish that ages and age differences obtained by stepwise thermal release analyses are real.All studies involving the stepwise thermal extraction of multiple isotopic components may show similar diffusion artifacts. Constant isotopic compositions may be obtained during thermal release which do not represent the actual compositions of sample reservoirs.  相似文献   

18.
The 26Al–10Be burial dating method has been applied to a range of problems in geochronology. This technique allows us to determine the burial age of quartz‐containing sediments, by measuring the concentration of cosmogenic 10Be and 26Al in the quartz. In its most basic form, the method assumes a simple history (single exposure episode followed by burial) for the quartz clasts. Balco and Rovey have recently developed an innovative isochron version of this method, which can take into account a more complicated exposure history for the quartz, and used it to date a series of glacial tills. There can be constraints on the slope and intercept of the isochron, depending on how we model the geology of the Balco–Rovey approach. We show how to take these constraints into account when fitting the slope and intercept; we apply a Bayesian approach, in which there is a straightforward way to implement constraints. We discuss the important issues that arise; a variety of choices must be made in choosing the prior, both in what geological insights to include and in how to include them. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Two rock avalanches in Troms County – the Grøtlandsura and Russenes – were selected as CRONUS-EU natural cosmogenic 10Be production-rate calibration sites because they (a) preserve large boulders that have been continuously exposed to cosmic irradiation since their emplacement; (b) contain boulders with abundant quartz phenocrysts and veins with low concentrations of naturally-occurring 9Be (typically < 1.5 ppb); and (c) have reliable minimum radiocarbon ages of 11,424 ± 108 cal yr BP and 10,942 ± 77 cal yr BP (1σ), respectively. Quartz samples (n = 6) from these two sites contained between 4.28 × 104 and 5.06 × 104 at 10Be/g using the 1.387 Myr 10Be half-life. Determination of these concentrations accounts for topographic and self-shielding, and effects on nuclide production due to isostatic rebound are shown to be negligible. Persistent, constant snow and moss cover cannot be proven, but if taken into consideration they may have reduced 10Be concentrations by 10%. Using the 10Be half-life of 1.387 Myr and the Stone scaling scheme, and accounting for snow- and moss-cover, we calculate an error-weighted mean total 10Be production rate of 4.12 ± 0.19 at/g/yr (1σ). A corresponding error-weighted mean spallogenic 10Be production rate is 3.96 ± 0.16 at/g/yr (1σ), respectively. These are in agreement within uncertainty with other 10Be production rates in the literature, but are significantly, statistically lower than the global average 10Be production rate. This research indicates, like other recent studies, that the production of cosmogenic 10Be in quartz is lower than previously established by other production-rate calibration projects. Similarly, our findings indicate that regional cosmogenic production rates should be used for determining exposure ages of landforms in order to increase the accuracy of those ages. As such, using the total 10Be production rate from our study, we determine an error-weighted mean surface-exposure age of a third rock avalanche in Troms County (the Hølen avalanche) to be 7.5 ± 0.3 kyr (1σ). This age suggests that the rock avalanche occurred shortly after the 8.2 kyr cooling event, just as the radiocarbon ages of the Grøtlandsura and Russenes avalanches confirm field evidence that those rock-slope failures occurred shortly after deglaciation.  相似文献   

20.
In situ cosmogenic nuclides are an important tool for quantifying landscape evolution and dating fossil-bearing deposits in the Cradle of Humankind (CoH), South Africa. This technique mainly employs cosmogenic 10-Beryllium (10Be) in river sediments to estimate denudation rates and the ratio of 26-Aluminium (26Al) to 10Be (26Al/10Be), to constrain ages of sediment burial. Here, we use 10Be and 26Al concentrations in bedrock and soil above the Rising Star Cave (the discovery site of Homo naledi) to constrain the denudation rate and the exposure history of soil on the surface. Apparent 10Be-derived denudation rates obtained from pebble- to cobble-sized clasts and coarse-sand in soil (on average 3.59 ± 0.27 m/Ma and 3.05 ± 0.25 m/Ma, respectively) are 2-3 times lower than the bedrock denudation rates (on average 9.46 ± 0.68 m/Ma). In addition, soil samples yield an average 26Al/10Be ratio (5.12 ± 0.27) that is significantly lower than the surface production ratio of 6.75, which suggests complex exposure histories. These results are consistent with prolonged surface residence of up to 1.5 Ma in vertically mixed soils that are up to 3 m thick. We conclude that the 10Be concentrations accumulated in soils during the long near-surface residence times can potentially cause underestimation of single-nuclide (10Be) catchment-wide denudation rates in the CoH. Further, burial ages of cave sediment samples that consist of an amalgamation of sand-size quartz grains could be overestimated if a pre-burial 26Al/10Be ratio calculated from the surface production is assumed. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号