首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
地铁隧道管片错台检测是保证地铁安全运营的重要工作,传统错台检测主要依赖人工巡检,由于天窗期短、隧道结构复杂,存在效率低、易漏检、成果难以量化等缺点。本文提出了一种基于移动三维激光扫描技术的错台检测方法,通过对点云数据生成的正射影像图进行环缝识别,提取环缝两侧断面,采用RANSAC-LSM方法对断面点云进行去噪、拟合,再将两侧断面套合即可分析管片错台情况。最后以杭州地铁某区间为例进行错台检测,并选取72处错台成果进行人工复核。结果表明:基于移动三维激光扫描技术进行错台检测,整体精度在±3 mm以内,能够满足盾构隧道管片错台检测要求,在地铁隧道安全检测中具有较好的应用前景。  相似文献   

2.
周米玉  孙海丽  杜黎明  钟若飞 《测绘科学》2021,46(5):112-117,125
针对盾构隧道收敛直径难以快速提取的问题,该文提出利用移动激光扫描技术获取的点云数据来提取收敛直径的方法.利用点云的强度信息结合k-d树算法和IDW插值方法生成隧道正射影像,基于canny算子和霍夫变换识别隧道每一圆环内的封顶块,并根据环内其他环片与封顶块的相对位置关系来划分环片,取水平直径所在附近的邻接块或标准块两段圆弧点进行圆拟合并在拟合前剔除粗差,圆拟合得到的直径作为该环的收敛直径,并通过与全站仪测量方法测得的收敛直径进行对比验证了本方法的精度.结果表明,该方法在快速获取盾构隧道收敛直径的同时也能有较高的精度.  相似文献   

3.
赵亚波  王智 《测绘通报》2020,(8):160-163
错台是地铁隧道的主要病害之一,通常是由于盾构机施工控制不好或是隧道荷载发生变化导致,错台的发生也会引起隧道收敛变形及渗水等其他病害。传统手段主要采用人工巡检等方式进行错台情况的检测,由于受夜间窗口期短的影响,该方法效率低,成果难以精确量化。研究采用基于轨道的隧道移动三维激光扫描系统对隧道错台进行检测,通过快速获取隧道三维点云生成正射影像,并基于正射影像进行管片的划分及里程的匹配,进而根据每一环的三维点云信息计算管片错台情况。以青岛地铁2号线为例,本文介绍了移动扫描技术在地铁隧道管片错台检测的应用情况,为该技术在其他隧道的推广应用提供了一定的借鉴意义。  相似文献   

4.
林乐胜  林松 《测绘通报》2023,(11):66-68+106
针对盾构隧道模块提取,本文提出了一种结合Hough直线检测和图像匹配的提取方法。首先基于RANSAC算法实现盾构隧道进行圆柱展开,并对张开的隧道点云二值化;然后采用带限制条件的Hough变换算法实现盾构隧道环的提取;最后基于隧道环片内封顶模块和邻接模块中部螺栓孔数和螺栓孔布局的特殊性匹配模块,结合环片构造尺寸精确提取模块点云。通过扫描某地铁获取的点云数据试验对本文算法进行验证。结果表明,本文算法可有效实现盾构隧道模块化提取。  相似文献   

5.
地铁隧道具有线路长、地质环境复杂、环片数量多、检测作业时间短等特点.隧道结构渗漏水病害检测是保障地铁隧道安全的重要工作,传统人工巡查检测方法检测速度慢,需耗费大量的人力物力,不能满足地铁更好运营需求.为提高隧道渗漏水检测效率,更好地适应轨道交通运营需求.本文依托高速移动三维激光扫描技术获取点云数据,提出局部图像分割方法,获取隧道渗漏水病害信息.首先通过空间变换法将三维点云数据转换为二维正射影像,采用图像二值化处理算法增强隧道渗漏水病害区域的边缘信息;然后利用区域描述算法对图像内的渗漏水区域进行分析,获取渗漏水病害区域的大小和里程信息,从而达到自动化识别隧道结构病害.研究结果表明,本文方法可快速检测地铁隧道内渗漏水病害的位置、面积等信息,节约检测时间和检测成本的同时保证了检测结果的准确性.  相似文献   

6.
渗漏水是盾构隧道结构存在潜在损伤或缺陷的重要表征,快速、准确检测出渗漏水位置,对隧道安全运营和维护具有重要意义。现有的方法大多采用光学影像对隧道渗漏水进行检测,受隧道内空间和光线条件限制,难以获得高质量病害图片。因此,本文提出了一种基于激光点云数据与改进Mask RCNN相结合的渗漏水检测方法。首先对激光点云反射强度进行修正;然后生成灰度图像并建立渗漏水病害数据集;最后在Mask RCNN算法中引入空洞卷积和变形卷积,实现了隧道渗漏水病害的快速检测。利用某地铁采集的数据进行验证,结果表明,本文提出的改进Mask RCNN算法相较于原始算法和FCN算法检测精度均有明显提升,在盾构隧道渗漏水识别方面性能表现较好。  相似文献   

7.
隧道轴线的偏差和断面测量是地铁隧道竣工测量的重要指标。本文详细介绍了运用空间几何的方法从海量三维激光点云数据中快速、准确地提取地铁盾构隧道断面和中心点的方法,在此基础上将提取的断面点云数据与设计断面曲线进行了二维对比分析,并在北京某地铁盾构隧道中进行了验证:从三维激光点云中提取的中心点坐标与全站仪测量得到的结果相差在±3mm以内,点位精度能够达到3.43mm。结果表明该方法可达到较高的测量精度,在地铁盾构隧道竣工测量中将具有较强的实用性。  相似文献   

8.
提出了利用二次曲线拟合地铁隧道中轴线方法, 建立了地铁里程与隧道盾构环片之间的对应关系。首先沿中轴线对隧道盾构环片进行分割, 针对分割后盾构片上附着的金属支架等噪声点, 提出基于隧道设计半径的粗滤噪和基于多项式拟合的精滤噪相结合的滤噪方法, 然后对滤噪后的两期隧道点云分别建立数字表面模型(DSM)并进行叠加分析, 获取不同里程处的隧道形变情况。试验表明, 该方法可获得地铁隧道内任意处的形变量, 可为相关研究工作提供借鉴。  相似文献   

9.
由于地铁盾构环片附着了大量的螺栓和螺丝以及隧道内壁上安装的大量金属支架、电器设备等附属物,使得获取的激光点云数据包含了大量的非隧道内壁点(以下简称非点),从而影响到隧道点云在形变监测、三维建模等方面的应用。本文提出基于区域分割的椭圆柱面模型方法来滤除非点,将地铁隧道横截面视为椭圆(根据盾构施工特点),利用获取的隧道原始点云数据提取出隧道中轴线,并沿隧道中轴线正交方向将点云分割为等间隔区域,然后利用各区域的点云分别迭代拟合为椭圆柱面,从而实现对隧道内壁非点的自动滤除。实验结果表明,该方法能够有效滤除隧道内的非点,为三维激光扫描技术用于地铁隧道形变监测提供高质量的点云数据。  相似文献   

10.
三维激光扫描能够对扫描场景进行高精度还原,三维激光扫描的点云含有位置和属性信息,基于多源传感器获取的地铁隧道点云数据,对其进行深度分析挖掘,可以获取更多有用信息。本次实验基于GRP5000隧道三维激光扫描系统对目前隧道工程进行状态分析和调查,实验结果表明:目标隧道1 000环管片椭圆度基本在10‰—15‰之间,其中最大几环椭圆度超过了20‰;隧道结构性渗漏水62处,隧道结构性开裂258处,管片错台最大值达到6 mm;管片水平直径最大偏差为52.8 mm,最小偏差为-36.2 mm,平均偏差为-9.9 mm,隧道受周围地质和人为因素干扰影响较大。  相似文献   

11.
移动式三维激光扫描技术在地铁盾构隧道安全监测工作中应用较为成熟。本文以地铁盾构隧道监测点云数据为基础进行研究,实现了地铁盾构隧道病害智能诊断。首先通过激光点云生成灰度图像;在此基础上运用卷积神经网络CNN,对地铁盾构隧道中的渗漏水和裂缝的识别技术进行了深入研究;最终生成隧道病害智能诊断系统,为地铁安全运营提供了智能监测方法,有效提高了我国地铁运营监测的技术水准。  相似文献   

12.
我国地铁隧道监测主要以全站仪为主的传统测量,监测点有限,监测过程缓慢,难以全面反映隧道结构的变形。本文针对地铁隧道结构特点,提出了一种基于新型移动式三维激光测量技术的隧道结构监测方案。首先利用移动激光扫描获取高密度点云数据;然后通过自动识别提取隧道顶部的环片拼接缝,以此为基础结合点云数据提取各环片断面信息,对环片结构进行分析;最后利用综合数据管理平台对各类监测成果进行管理分析,实现隧道结构变化的科学管理。实际工程应用表明,该方案监测结果准确、成果分析与管理更加科学,满足隧道健康监测的需求。  相似文献   

13.
隧道变形的精确测量对于掌握隧道衬砌结构的变化及其发展规律、保障隧道的安全运行具有重要意义。本文首先借助轨载移动三维激光测量系统获取地铁隧道的激光点云,结合隧道呈柱面的几何特点,提出一种基于断面基准面投影的盾构隧道点云模型构造方法;然后利用断面基准面点云的高度梯度与三维特征分割隧道管环并提取隧道断面,从而获取盾构隧道的连续横断面,为隧道变形监测提供基础。  相似文献   

14.
基于地面激光技术的隧道变形监测技术   总被引:1,自引:0,他引:1  
研究了将地面激光技术应用于地铁隧道变形监测,运用基于点云法向量差异的点云分割算法对点云数据进行抽稀,使用抽稀后点云数据构建地铁隧道模型,对隧道进行整体变形分析,构建地铁隧道三维模型不仅提高了变形监测精度,而且能够反映隧道整体变形趋势。将此方法应用于天津地铁一号线隧道变形监测,通过与光纤位移计结果对比,变形监测精度在4 mm以内,能够满足地铁隧道变形监测的需要。  相似文献   

15.
随着地铁运营时间的不断增加、地下水位的上涨,地铁隧道渗漏水情况日益严重,已严重影响地铁隧道的安全运行。传统的检测方法为人工现场巡查,效率低、准确率差,高自动化、高精度、高稳定性的漏水检测方法是改进传统检测方法的关键。因此,本文提出了一种利用移动激光扫描隧道进行渗漏水检测的深度学习方法。该方法由以下部分组成:①利用获取的隧道衬砌点云建立渗漏水数据集;②通过基于掩码区域卷积神经网络进行自动渗漏检测。在南京地铁2号线奥体东—兴隆大街测试结果表明,本文方法实现了隧道衬砌漏水在二维平面的自动化检测和评价,为检测人员提供了直观的漏水信息展示。  相似文献   

16.
因具备高速、灵活和高精度的特点,移动式激光扫描被广泛用于地铁隧道的监测系统中。针对现有数据处理方法的里程配准误差大、数据利用率低的问题,本文提出了从扫描到后处理的一体化数据转换方法。在预扫描阶段,对隧道进行预标定,根据速度曲线的概率密度确定噪声界限;在正式扫描阶段,标定小车匀速运动的开始计速点,仅在惯导速度超限的情况下更新里程;在后处理阶段,首次基于激光点云数据生成360°全景图用于病害监测,提高了用户交互性。试验结果表明,本文方法在50 m内的测量误差小于1.2 mm,优于已有的螺旋扫描方法。因此,本文方法更适用于传感器精度低,测量频率高,且监测隧道较长的移动式激光扫描系统。同时,生成的全景图为隧道病害监测提供新的发展方向。  相似文献   

17.
丁孝兵  高志强  杨坤 《测绘通报》2021,(9):112-115,129
地铁隧道初始运营前,需要对隧道的施工质量和零状态进行检测,传统方法采用全站仪测量隧道的特征点及断面,工作量大、效率低、成果单一。针对上述问题,本文提出了基于惯导和CPⅢ控制点的地铁隧道移动扫描三维点云重建方法,并验证了隧道断面点云、中轴线及轨道中心位置成果精度,满足隧道规划验收测量要求。同时,该方法可同步获得隧道的水平直径、管壁影像、纵断面图及横断面图等成果,既提高了作业效率,其测量成果又可作为轨道交通结构的零状态档案,为地铁隧道规划验收测量及后期运营维护提供翔实的基础资料。  相似文献   

18.
地铁运营阶段对隧道结构的变形监测保证了地铁运行的安全。现阶段我国地铁隧道监测主要采用传统的全站仪等设备进行人工测量,该方法布设的变形监测点有限,且监测过程缓慢,难以全面反映隧道结构的整体变形特征。本文将移动式三维激光技术引入地铁隧道监测,采用推行式扫描方法快速获取隧道完整结构信息,自动化后处理软件全面监测隧道结构变形信息。该方法在满足监测精度要求的情况下,实现了地铁隧道快速、全面、可靠的结构监测结果。  相似文献   

19.
盾构法地铁隧道施工测量中,提高联系测量对隧道贯通起着决定的作用。本文对地铁施工测量贯通测量的误差来源进行了分配,对二井定向利用激光铅垂仪向上投点方案进行了精度分析,并和钢丝投点法的计算成果进行了比较,提出了激光铅垂仪向上投点法方案措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号