首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
文章提出了青藏高原东缘南北向河流系统的概念,该系统包括岷江、青衣江、大渡河、鲜水河、雅砻江等总体呈现南北走向的河段,指出南北向河流系统的形成演化具有构造和气候双重意义.晚更新世以来,南北向河流系统发生多次堵江事件,形成数套堰塞湖沉积.选取岷江上游、青衣江上游、大渡河上游3个古堰塞湖进行沉积、构造及年代学研究.结果表明,岷江上游叠溪一带于71ka左右发生了大面积堵江事件,形成了上游长约30km的堰塞湖,堰塞坝位于叠溪以南的下游河谷,沿江分布约10km;该堰塞湖持续了60ka,于11 ka左右彻底溃坝.青衣江上游五龙乡古堰塞湖85ka前形成,35ka前溃坝,规模不详.大渡河上游开绕村古堰塞湖长于5km,堵江时间不明,20~17ka间溃坝,堰塞坝位于色玉村一带.依据这些古堰塞湖的沉积,构造,关键层位光释光测年数据,结合前人研究成果,划分出青藏高原东缘晚更新世中、晚期存在85~70ka,43~30ka和20~10ka的3个构造活跃期,可对应于青藏高原古里雅冰芯δ18O曲线体现出的C1,C3和C4的3次气候冷暖转变期.指出大规模堵江事件是快速的能量物质转化过程,地震释放强大内能,气候因素使得物质得以积累,深切河谷是堵江的有利场所.构造-气候耦合促使大型洪积扇发育、大规模堵江事件发生,进而改变河流动力、塑造河谷地貌.  相似文献   

2.
在雅鲁藏布江中游山南宽谷段发现了一套湖相沉积地层,形成时代为晚更新世晚期,为冰川阻江形成的堰塞湖沉积物。野外调查发现该套湖相地层在桑日县、乃东县、扎囊县等地均有出露,综合研究认为其为一个东起桑日县扎巴村、西至贡嘎机场附近的大型古堰塞湖泊,面积达700多km2。通过区域调查,该堰塞湖形成的湖相沉积地层在贡嘎县杰德秀镇出露最厚,厚10余m,主要由粉砂质黏土层、细砂层组成,水平纹层等湖相沉积特征明显,本研究称之为杰德秀古湖。杰德秀剖面顶部14C日历校正年龄为15 680~15 105 aBP,属于末次盛冰期。对比林芝古湖、格嘎古湖和松宗古湖等雅鲁藏布江下游堰塞湖的沉积物特征和形成时间,认为杰德秀古湖发育于末次盛冰期。沉积相特征和湖水库容量模拟分析表明,该堰塞湖发育时期,雅鲁藏布江中游山南宽谷段并未完全封闭,为一个湖水面积巨大的过水湖或吞吐湖,类似于现代过水水库。桑日县扎巴村雅鲁藏布江河谷两岸分布有冰碛物,其与雅鲁藏布江中游山南宽谷段的湖相沉积地层的时空关系指示杰德秀古湖与冰川阻塞河道有关,杰德秀古湖是由于冰川阻江形成的冰川堰塞湖。研究结果也进一步说明,雅鲁藏布江现代水系形成以前,其中游不存在面积巨大的众多古湖泊,雅鲁藏布江也不是溯源侵蚀疏干多个古湖泊而形成的,在古湖泊形成之前,雅鲁藏布江已经贯通。雅鲁藏布江流域内的古湖泊是由于气候变化、新构造运动或地震活动等原因造成河道堵塞形成的堰塞湖。  相似文献   

3.
河流阶地是地表最常见的地貌之一,常被用作研究新构造、气候事件的材料之一。青藏高原东南缘山高坡陡,有多条强烈活动的大型断裂,是强震多发区,区内的河流往往流经高山峡谷。因此,河谷堆积物除正常河流相堆积外,还有多种其他成因。文章以金沙江中游地区河谷堆积物为研究对象,根据沉积特征和测年结果,对其成因进行了探讨,发现有以下的非正常河流相堆积:1)由于河道宽窄相邻,可形成短期雍水湖,从而产生的沉积;2)高山峡谷或地震带附近的河道,因滑坡堵塞河道成堰塞湖,发育堰塞湖沉积;堰塞湖溃坝后,在下游也可产生溃决洪水堆积;3)河道两侧高大雪山冰川导致的冰水相堆积。因此,在高山峡谷地区根据阶地来研究新构造、气候事件时需要极其慎重。研究结果表明,洪水堆积物由于存在不充分曝光,其释光、电子自旋共振年龄会明显偏老、大于下伏正常的河流相样品年龄;金沙江中游涛源一带有高差达400 m、发育在不同高程的同期湖相层,应为同个堰塞湖沉积物;大洼村可见特大滑坡,滑坡体从左岸冲到右岸,滑坡坝拔河高在600 m以上、宽度在2~3 km之间,可以形成巨大的堰塞湖,涛源古湖可能与大洼滑坡相关。  相似文献   

4.
文章通过对雅鲁藏布江的Ⅰ级支流—帕隆藏布江扎木镇-古乡段辫状水系地貌的研究,认为其与两岸支谷发育的泥石流群有关。通过对位于该河段下游的古乡沟和上游的地质弄巴泥石流特征的重点剖析,发现了特大型泥石流发育的2个重要特征,即支谷上游冰蚀围谷中赋存大量巨厚古今冰碛物和支谷中游峡谷段大型崩塌滑坡坝溃决。提出了特大型泥石流的成灾模式,并以该成灾模式解释了2000年易贡巨型滑坡堵江事件。最后,提出了基于上述成灾模式的帕隆藏布江流域特大型泥石流灾害防治的原则和方法。  相似文献   

5.
雅鲁藏布江63条主要支流中有24条支流与干流逆交,16条支流与干流直交,其中雅鲁藏布江中游37条支流中有12条直交支流和21条逆交支流。通过野外地质调查、遥感图像分析和年代学研究,认为藏南雅鲁藏布江存在流向反转现象,上新世以来发育的近东西向雅鲁藏布江袭夺了始新世-中新世形成的近南北向河流,形成直交水系结构。东西向雅鲁藏布江中游发育上新世至中更新世吉隆、定日、定结-岗巴等湖盆,它们向东有序迁移,上新世至早更新世湖盆发育期的构造沉降为雅鲁藏布江西流提供了地貌基础和容水空间,更新世以来的古大湖区约1 000 m高的隆升造成上述盆地由湖相转为河流相,晚更新世东构造结东侧与南侧河流的贯通和雅鲁藏布江大峡谷的形成导致雅鲁藏布江反转,这在米林-直白湖盆和孟加拉盆地沉积中有所反映。雅鲁藏布江的反转过程反映了青藏高原南部南北向和东西向的差异隆升、基岩剥蚀作用、河流切割作用的耦合关系以及板内伸展构造对板块碰撞构造的叠加和改造作用。  相似文献   

6.
张岳桥  李海龙  李建 《地球学报》2016,37(4):481-492
青藏高原在末次冰期晚期(30—40 ka B.P.,相当于MIS3a阶段)出现的暖湿气候事件强烈地影响了川西高原东缘河流地质生态环境。表现在深切河谷中普遍发育大型滑坡、泥石流、冲洪积扇体等灾变事件和古堰塞湖沉积。本文重点剖析了岷江上游、大渡河中游大型堵江事件的地形地貌特点、沉积物发育特征、沉积年代学、新构造背景等,同时分析了黄河上游玛曲段大型冲-洪积扇体的沉积特征与时代。结果表明在川西高原东缘深切河谷普遍存在距今30—40 ka时期的堵江事件,而这一时期在黄河上游发生大型冲-洪积事件和黄河袭夺若尔盖古湖事件,二者均与青藏高原末次冰期暖湿事件同步。研究认为这期急剧气温变化增强了河谷侵蚀和卸载能力,而东缘强烈的地震断层活动又触发了突发事件的发生,暖湿气候事件与新构造运动在时空上的耦合共同塑造了晚更新世晚期川西高原东缘深切河谷系统特殊的地质生态环境及其演变。  相似文献   

7.
岷江上游第四纪叠溪古堰塞湖的演化   总被引:5,自引:0,他引:5  
采用岩性相和沉积体系的分析方法对岷江上游流域的阶地进行了研究.发现叠溪较场到太平村以北约28km的沿江河段内断续分布有湖相沉积。对太平村一带的三级阶地沉积识别出冲积扇沉积体系、湖泊沉积体系、河流沉积体系和风成、表生沉积体系。认为古堰塞湖发育2期高湖平面,其间存在低湖面期形成的古土壤层。根据最高湖泊沉积与堵江滑坡体的顶部高度对比和堰塞湖发育的时间计算,太平村地区相对叠溪校场地区存在着平均3.18m/ka的抬升运动。  相似文献   

8.
吴瑞安  张永双  郭长宝  杨志华  钟宁  任三绍  张怡颖 《地质论评》2022,68(1):2022020009-2022020009
开展古滑坡堰塞湖形成演化过程研究,可以揭示古灾害地质环境效应,重建区域构造历史活动序列和古气候演变特征。特米古滑坡发育于金沙江上游巴塘段,滑坡堆积地貌和堰塞湖相沉积物保存较好,是研究区内古地质环境的良好载体。在遥感解译、无人机测绘、现场调查和地质测年的基础上,结合前人研究成果,分析探讨了特米古滑坡发育特征、堰塞湖形成时间与溃决演化过程。结果表明,特米古滑坡是特大型岩质历史堵江滑坡,滑坡堰塞湖实际形成时间应该远早于2.15 ka BP,历史上曾发生过多次溃决,完全溃决时间大约为1.08 ka BP,堰塞湖稳定保存时间大于1.07 ka。金沙江巴塘段大型堵江滑坡群并非由单次地质事件形成,而是由金沙江断裂带多次强烈地震诱发。  相似文献   

9.
西藏米林地区湖积物的磁性特征及其古气候意义   总被引:1,自引:0,他引:1  
米林地区雅鲁藏布江三级河流阶地上发育厚达52.2m的晚更新世晚期深-浅湖相和滨-浅湖相沉积物, 显示当时米林地区存在一个规模较大的古堰塞湖.为了探讨该套湖积物记录的古气候、古环境信息, 在米林机场剖面采集了259块定向样品进行环境磁学测试和分析.其中, 磁组构分析表明86%的样品具有原生磁组构, 它们的最大磁化率主轴κ1指示米林古堰塞湖的物源经历了由南、北方向到西、北东再至西向这一大致顺时针方向变化的趋势, 可能与该区的差异隆升作用有关.研究剖面的天然剩余磁化强度 (NRM) 和体积磁化率 (κ) 变化曲线与沉积物的粒度、沉积相关系密切, 反映该区晚更新世晚期至少经历了4次显著的气候波动;同时, NRM、κ波动曲线能够很好地对应于格陵兰冰心GISP2的δ18O曲线IS1-IS6和IS8, 并记录了新仙女木事件 (YD) 和3次Heinrich事件 (H1, H2, H3) , 表明米林地区晚更新世晚期的气候变化受到全球气候系统影响.   相似文献   

10.
青藏高原东南部帕隆藏布江松宗地区晚更新世期间发生了一次可以识别的支谷冰川阻江形成冰川堰塞湖——松宗古湖的事件。松宗滑坡处的湖相沉积剖面厚度≥88m,其中厚达18.33m并具湖相沉积代表性的连续粉质粘土层底部和顶部的光释光年龄分别为22.5±3.3kaB.P.和16.1±1.7kaB.P. , 属末次盛冰期。松宗滑坡处河谷两侧冰碛台地与湖相沉积的接触关系和空间特征指示该湖相沉积与末次盛冰期董曲支谷冰川阻塞帕隆藏布江有关。湖相地层的剖面沉积特征揭示出这个冰川堰塞湖可能贯穿于整个末次盛冰期,但整个帕隆藏布并没有形成统一的山谷冰川。  相似文献   

11.
展布于青藏高原东南部的雅鲁藏布江流域河谷中广泛分布有古堰塞湖沉积,古堰塞湖发育与构造活动、气候变化和地表过程等因素关系密切.在广泛地质调查的基础上,识别出雅鲁藏布江流域的十余个古堰塞湖,通过对其开展沉积学、地貌学和年代学工作,结合前人工作结果,初步建立了古堰塞湖群的地层年代框架.地表残留的古堰塞湖沉积多集中于末次冰期冰...  相似文献   

12.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

13.
在第四纪的末次冰期、新冰期和小冰期期间,位于大峡谷入口处的则隆弄跃动冰川发生多次的快速前进,多次发生阻塞雅鲁藏布江事件,在大峡谷以上河段形成4期(Ⅳ~Ⅰ)的林芝古堰塞湖。14 C测年结果指示第2次、第3次和第4次堰塞湖分别发生在9760~11300aB.P.,1220±40~1660±40aB.P.和287±93~394±83aB.P.。估计Ⅳ~Ⅱ期堰塞湖库容量约2150km3,835km3和81km3。冰川阻塞湖坝的溃决释放突发性洪水,对下游的雅鲁藏布大峡谷河段及下游地区的环境产生巨大的影响。  相似文献   

14.
The drainage evolution and valley development of the Jinsha River is an important issue constantly concerned by researchers in geology and geomorphology. Despite hundreds of years of research, there is a big dispute on the formation time and the evolution process of the fluvial valley. Fluvial terraces are very important geomorphic markers for studying the formation and evolution of the fluvial valley. Through field investigation combined with Electron Spin Resonance (ESR) dating, we confirmed that 5 fluvial terraces were formed, and then preserved, along the course of the Jinsha River near the Longjie, which are all strath terraces. Among them, T5 developed on the base rock, with an age of (78±12) ka; all T4~T1 developed on the lacustrine sediments, named Longjie Group by Chinese, with an age of (29±1.4) ka, (26±2.4) ka, (23±1.4) ka, (18±1.7) ka, respectively. Compared with the global and regional climate change history, the terraces are all the result of the river responding to the climate change. T5 formed at MIS 5/4, and T4~T1 formed at the period of regional climate fluctuation. The relationship of terraces and the Longjie Formation, combined with sedimentary characteristics analysis demonstrate that the Longjie Formation is landslide dammed lake sediment. The landslide and blocking events.seriously influenced the valley evolution, inhibiting the river incising, and making the valley evolution defer to the mode of “cut-landside-damming-fill-cut” in the period of Late Pleistocene. Synthesized studies of the terraces and the correlative sediments indicate that the formation of the Jinsha River valley may have begun in the late Early Pleistocene.  相似文献   

15.
雅鲁藏布江大拐弯入口段活动的地质构造、特殊的地形与气候条件酿就了暴雨泥石流及冰川泥石流等地质灾害。近60a来,则隆弄冰川泥石流曾两度摧毁直白村;鲁霞-德阳段暴雨泥石流的洪积扇已经深入雅鲁藏布江中,该段河道处于半阻塞状态。两处地点的泥石流对上下游村庄、城镇及设施带来严重威胁。依据地貌调查及室内DEM定量分析,了解泥石流地质灾害的空间分布特征及其成因,对前人认为则隆弄冰川泥石流堰塞雅鲁藏布江造成上游回水成湖淹没米林、林芝等地的观点提出了新的看法;米林、林芝古淹没事件可能是对多地点泥石流爆发的响应。对米林—加拉一线不同地点不同类型的泥石流灾害可能造成的不良环境效应进行评估后提出几点应对措施。  相似文献   

16.
Lacustrine, alluvial terraces and sediments record at least one Holocene glacially dammed lake in Songzong Basin immediately upstream of the Purlung TsangpoRiver, a main tributary of the downstream of Yarlung Tsangpo River, at the northeastern syntaxis of the Himalaya. The lacustrine deposit is more than 88 meters thick at the SongzongLandslide. There is an 18.33 meters thick layer of lacustrine silt within the lacustrine terrace. The Optical Simulated Luminescence (OSL) ages at the bottom and top of the lacustrine silt layerare 22.5±3.3ka B.P., and 16.1±1.7ka B.P., respectively, which indicates that the lacustrine deposits were formed during the Last Glacial Maximum ranging from 25kaB.P. to 15kaB.P.The ancient shorelines and the lake erosion zone confirm the preexistence of Songzong Lake. There are also terraces formed by moraines in the Songzong Basin. The high and large moraineterrace seen near the mouth of the Dongqu Valley is very prominent. The special characteristics of thelacustrine sediment and the ancient lake line in the Songzong Basin indicate that the lacustrinesediments are related to the blocking of the Purlung Tsangpo River by a glacier from DongquValley during Last Glacial Maximum.  相似文献   

17.
Lacustrine and alluvial terraces and sediments record the extent of at least two Holocene glacially dammed lakes immediately upstream of the Tsangpo River gorge at the eastern syntaxis of the Himalaya. The larger lake covered 2835 km2, with a maximum depth of 680 m and contained an estimated 832 km3 of water; the smaller lake contained an estimated 80 km3 of water. Radiocarbon dating of wood and charcoal yielded conventional radiocarbon ages of 8860 ± 40 and 9870 ± 50 14C yr B.P. for the higher set of lake terraces, and 1220 ± 40 and 1660 ± 40 14C yr B.P. for sediments from the lower terraces. Catastrophic failure of the glacial dams that impounded the lakes would have released outburst floods down the gorge of the Tsangpo River with estimated peak discharges of up to 1 to 5 × 106 m3 s−1. The erosive potential represented by the unit stream power calculated for the head of the gorge during such a catastrophic lake breakout indicates that post-glacial megafloods down the Tsangpo River were likely among the most erosive events in recent Earth history.  相似文献   

18.
雅鲁藏布江是青藏高原上的一条大河, 其河谷地貌和地质环境演化的发育历史对于青藏高原地质研究有重要意义。前人用ESR和14C测年方法对雅鲁藏布江河谷两岸广泛分布河湖相沉积物、冰碛物测年确定了有四期堰塞湖。作者用光释光(OSL, Opically Stimulated Luminesecence)测年方法分析采集到的湖相样品年龄为(50.9±2.1) ka BP和(1.8±0.1) ka BP, 证明雅鲁藏布江大拐弯处末次冰期早冰阶和新冰期存在 古堰塞湖。  相似文献   

19.
通过时雅鲁藏布大峡谷流域地貌形成响应时间域的定量估算,大峡谷与上游河道特征的时比,以及大峡谷入口处河湖阶地的沉积分析和定年研究.结合构造研究的新进展和数值地貌分析成果,系统论证了雅鲁藏布大峡谷的形成。研究结果表明,现今的雅鲁藏布大峡谷与大峡谷上游的河道在大峡谷形成之前分属不同的河流体系,大约在距今30kaBP前后,原属于帕隆藏布江水系支流的扎曲一直白河段因溯源侵蚀,袭夺了位于现今直白河段上游的古雅鲁藏布江水系,使得此前向南经南伊沟(纳伊普曲)流出高原的古雅鲁藏布江与帕隆藏布江合二为一,雅鲁藏布大峡谷得以贯通和强烈的侵蚀下切,形成现今著名的大峡谷和大拐弯式样的流域结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号