共查询到18条相似文献,搜索用时 46 毫秒
1.
传统的栅格法与曲率法对数据模型进行精简时很容易剔除特征点,但是误判率较高,导致精简后的数据不能较好地突出点云数据的特征,使重构后的实体模型精度下降。针对以上问题,本文算法首先使用改进的Kmeans进行质心初始化;然后,使用X-Y边界提取算法来保留边界完整性;最后,根据Hausdorff距离对簇进行细分,在高曲率区域保留必要多的点,在低曲率地方保留一些均匀分布的点。实验验结果证明该方法优于传统的栅格法与曲率法。 相似文献
2.
3.
4.
5.
6.
针对原始结构光钢轨轮廓点云数据量大、强噪声和离群杂点多的问题,本文提出了一种欧式聚类融合多种传统滤波方式的钢轨点云自适应精简的方法。采用点云欧式距离为特征量的聚类分割方法用于无效杂散点数据的识别和精简,采用统计滤波结合均匀体素下采样滤波方法实现点云初步去噪。在此基础上,通过欧式聚类分割噪点,采用自动获取滤波范围的自适应直通滤波去除轨底粘连数据,以保证点云配准的效率与准确性。本文提出的方法可有效精简无效数据和去噪,点云精简比约为94%,同时保留了原始点云的有效轮廓特征,为点云配准与磨耗点的高精度识别奠定了基础。 相似文献
7.
针对车载激光雷达点云数据量大、密度高且存在分层错位和噪点等情况,提出了一种具实时性激光点云快速栅格化算法,该算法根据雷达扫描精度预设栅格单元大小,可在不丢失对象形状特征的情况下,能快速完成点云数据平滑及降采样处理,并将数据量缩小为处理前的60%。将该栅格算法处理后的点云数据应用于深度学习,作为pointnet++神经网络的训练集及测试集,完成语义分割模型训练与测试。实验结果表明,该算法可在1 s内完成上百万量级的点云栅格处理,并且经该算法处理后的点云数据能有效缩短训练时长、提升网络测试精度。 相似文献
8.
9.
10.
机载激光雷达点云数据的实时渲染 总被引:4,自引:0,他引:4
提出了一种实时绘制大规模LIDAR点云数据的方法。该方法通过构建一棵顺序四叉树使点云均匀分布在四叉树节点上,来实现快速的数据筛选。阐述了顺序四叉树的快速建立,并通过一个试验系统验证了文中所提方法的有效性。试验表明,使用目前普通配置的计算机,通过自适应控制绘制的数据量,可以实时绘制约1GB的原始点云数据。 相似文献
11.
针对现有的LiDAR点云分割算法稳健性差、效率低的问题,本文提出了一种新的层次化聚类分割算法。该算法首先把点云生成自适应分辨率的超体素,然后以超体素为基元,改进成对链接的分割算法,实现三维点云的分割。试验结果表明,该分割算法与现有的分割方法相比,具有更好的稳健性和更高的计算效率,避免了点云过分割和欠分割的问题。本文算法在分割细节方面更加突出,分割结果可有效地保证后续数据处理工作的精度。 相似文献
12.
13.
针对传统不规则三角网滤波精度依赖于初始种子点选取的问题,提出一种结合形态学与不规则三角网的机载LiDAR点云滤波算法。首先采用KD树粗差剔除方法对异常点进行剔除,然后利用数学形态学滤波算法对粗差剔除后的点云进行粗滤波,最后采用改进的不规则三角网滤波算法对上述结果进行精滤波。三角网迭代滤波过程中每次对滤波得到的地面点进行整体构网,减少了构网次数以及离散点之间的相互影响。实验选取国际摄影测量与遥感协会提供的3组测试数据进行滤波,结果表明本文方法能够有效降低I类误差和II类误差,验证本文滤波算法的可靠性。 相似文献
14.
建筑物是城市三维建模的重要元素,其轮廓信息的提取既是难点又是重点。本文提出了原始激光雷达点云数据的渐进式建筑物轮廓线提取方法。首先对原始点云数据采用渐进数学形态学滤波分离非地面点;然后使用改进的三维Hough转换分类出建筑物点云;进一步提取建筑物轮廓点,并根据相邻点方位角阈值确定建筑点云轮廓的关键点,以此简化并拟合建筑物轮廓线;最后基于轮廓线长度加权方向将建筑物轮廓规则化。结果表明,该方法大大提高了点云处理的效率和精度,可以直接从采集到的初始数据中自动化渐进式得到建筑物轮廓线信息。同时该方法对解决中小城镇建筑物体积小,距离近和屋顶坡度较大等问题具有较好的效果。 相似文献
15.
16.
利用LiDAR数据进行电力设施提取与建模可以克服传统工程测量电力巡线工作量大,危险性高,效率低下等缺点,但现有的电力线提取研究主要集中在电力线的分离与提取,并且拟合的精度不高。针对此问题本文提出了一种精度较高的电力线拟合方法。首先,根据电力线两端悬挂、中间自然下垂的特点,求解电力线拟合的最佳几何模型;然后,通过电力线的走向和端点,建立电力线拟合的最佳平面坐标系;最后,采用基于二次多项式限制的最小二乘法拟合电力线,解算出最优参数,生成最终电力线模型。对真实数据的处理和精度评价表明,本文方法不仅能够实现电力线的快速3维重建,而且能够达到较高的拟合精度。 相似文献
17.
针对现有大规模点云数据平面特征分割方法中存在的错误识别、效率低、抗噪性差等问题,该文提出一种基于2D霍夫变换和八叉树的建筑物平面精细分割方法。该方法首先,对原始点云进行空间均匀降采样并向X-Y面投影,利用改进的2D霍夫变换算法提取投影后的点云线段,使用选权迭代法精确计算线段所在直线的方程及端点坐标,进一步确定立面的空间几何方程;接下来,建立原始点云数据的八叉树结构,利用端点坐标设计立方体并分割出立方体内的立面点云;最后,将立面点云从原始点云中剔除,对余下点云降采样并向X-Z面投影,重复以上过程分割水平面点云。试验验证了该文方法对建筑物面状特征分割的有效性。 相似文献